\(\mathcal{Description}\)

  link.

  给定一个 \(n\times m\) 的网格图,一些格子指定了走出该格的方向(上下左右),而有 \(k\) 格可以任意指定走出方向。求指定的方案数,使得从任意格子都可以走出网格图。

  \(n,m\le200;k\le300\)。

\(\mathcal{Solution}\)

  令“走出边界”为走到一个特殊点,建图,其中未指定方向的点向四周连边,相当于求以特殊点为根的内向树个数,跑矩阵树定理即可。复杂度 \(\mathcal O(n^3m^3)\)。

  考虑优化,生成树个数实质上只与不定向的点有关,所以直接预处理出每个不定向点向上/下/左/右走到的第一个不定向点,向其连边,再跑矩阵树。复杂度 \(\mathcal O(k^3)\)。

\(\mathcal{Code}\)

#include <cstdio>
#include <cstring>
#include <iostream> const int MOD = 1e9 + 7, MAXN = 200, MAXP = 300;
int T, N, M, K[MAXP + 5][MAXP + 5], col[MAXN + 5][MAXN + 5], unk[MAXN + 5][MAXN + 5], cnt;
char gar[MAXN + 5][MAXN + 5]; inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} inline int det ( const int n ) {
int ret = 1, swp = 1;
for ( int i = 2; i <= n; ++ i ) {
for ( int j = i; j <= n; ++ j ) {
if ( K[j][i] ) {
if ( i ^ j ) std::swap ( K[i], K[j] ), swp *= -1;
break;
}
}
if ( ! ( ret = 1ll * ret * K[i][i] % MOD ) ) return 0;
for ( int j = i + 1, inv = qkpow ( K[i][i], MOD - 2 ); j <= n; ++ j ) {
int d = 1ll * K[j][i] * inv % MOD;
for ( int k = i; k <= n; ++ k ) K[j][k] = ( K[j][k] - 1ll * K[i][k] * d % MOD + MOD ) % MOD;
}
}
return ( ret * swp + MOD ) % MOD;
} inline bool findLoop ( const int x, const int y, const int cur ) {
if ( x < 1 || x > N || y < 1 || y > M || gar[x][y] == '.' ) return false;
if ( col[x][y] == cur ) return true;
if ( col[x][y] ) return false;
col[x][y] = cur;
if ( gar[x][y] == 'L' ) return findLoop ( x, y - 1, cur );
if ( gar[x][y] == 'R' ) return findLoop ( x, y + 1, cur );
if ( gar[x][y] == 'U' ) return findLoop ( x - 1, y, cur );
if ( gar[x][y] == 'D' ) return findLoop ( x + 1, y, cur );
return false;
} inline int findUnknown ( const int x, const int y ) {
if ( x < 1 || x > N || y < 1 || y > M ) return 1;
if ( unk[x][y] ) return unk[x][y];
int& ret = unk[x][y];
if ( gar[x][y] == 'L' ) ret = findUnknown ( x, y - 1 );
if ( gar[x][y] == 'R' ) ret = findUnknown ( x, y + 1 );
if ( gar[x][y] == 'U' ) ret = findUnknown ( x - 1, y );
if ( gar[x][y] == 'D' ) ret = findUnknown ( x + 1, y );
return ret;
} inline void add ( const int s, int t ) {
if ( ! t ) t = 1;
++ K[s][s], -- K[s][t];
if ( K[s][t] < 0 ) K[s][t] += MOD;
} int main () {
for ( scanf ( "%d", &T ); T --; ) {
memset ( K, 0, sizeof K );
memset ( col, 0, sizeof col );
memset ( unk, 0, sizeof unk );
scanf ( "%d %d", &N, &M ), cnt = 1;
for ( int i = 1; i <= N; ++ i ) {
scanf ( "%s", gar[i] + 1 );
for ( int j = 1; j <= M; ++ j ) {
if ( gar[i][j] == '.' ) {
unk[i][j] = ++ cnt;
}
}
}
bool loop = false;
for ( int i = 1, cur = 1; i <= N && ! loop; ++ i ) {
for ( int j = 1; j <= M && ! loop; ++ j ) {
loop |= findLoop ( i, j, cur ++ );
}
}
if ( loop ) { puts ( "0" ); continue; }
for ( int i = 1; i <= N; ++ i ) {
for ( int j = 1; j <= M; ++ j ) {
findUnknown ( i, j );
}
}
for ( int i = 1; i <= N; ++ i ) {
for ( int j = 1; j <= M; ++ j ) {
if ( gar[i][j] == '.' ) {
add ( unk[i][j], unk[i][j - 1] );
add ( unk[i][j], unk[i][j + 1] );
add ( unk[i][j], unk[i - 1][j] );
add ( unk[i][j], unk[i + 1][j] );
}
}
}
printf ( "%d\n", det ( cnt ) );
}
return 0;
}

Solution -「Code+#2」「洛谷 P4033」白金元首与独舞的更多相关文章

  1. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  2. [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞

    [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...

  3. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  4. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  5. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  6. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

  7. 「洛谷P1516」 青蛙的约会

    洛谷题号:P1516 出处:? 主要算法:数论 难度:4.4 思路分析: 典型的同余方程.由于是纬线,绕一圈是可以绕回来的,所以是可以取模的. 阅读题目,很容易得到同余方程$ x + tm ≡ y + ...

  8. 「BZOJ1038」「洛谷P2600」「ZJOI2008」瞭望塔 半平面交+贪心

    题目链接 BZOJ/洛谷 题目描述 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安. 我们将H村抽象为一维的轮廓.如下图所示: 我们可以用一条山的上方 ...

  9. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

随机推荐

  1. 如何在 CentOS 上安装 dos2unix 和 unix2dos 命令

    yum install -y dos2unix 注意:以上安装包既包含 dos2unix 命令,又包含 unix2dos 命令.

  2. C# 使用vs2017 创建类 时 注意点

    1.创建新类后,在其他类无法new 这个新创建的类 ,怎么回事? 原因很简单,创建类时不带修饰符,默认是被保护的类 上图为创建类后的默认代码 ,没有修饰符 ,在其他类中无法引入改类的命名空间,会显示找 ...

  3. Kube-OVN1.5.0新版本发布,支持鲲鹏云平台网络平面部署

    近日,Kube-OVN发布了最新的1.5.0版本.自2019年4月开源以来,Kube-OVN经历了15次重要版本迭代,以及社区成立,建设者贡献代码,稳定性测试,国内外用户开始在生产环境中投入使用,企业 ...

  4. 网络协议学习笔记(四)传输层的UDP和TCP

    概述 传输层里比较重要的两个协议,一个是 TCP,一个是 UDP.对于不从事底层开发的人员来讲,或者对于开发应用的人来讲,最常用的就是这两个协议.由于面试的时候,这两个协议经常会被放在一起问,因而我在 ...

  5. leetcode 1541. 平衡括号字符串的最少插入次数

    问题描述 给你一个括号字符串 s ,它只包含字符 '(' 和 ')' .一个括号字符串被称为平衡的当它满足: 任何左括号 '(' 必须对应两个连续的右括号 '))' . 左括号 '(' 必须在对应的连 ...

  6. Collection类集

    1.Collection接口 Collection是最基本的集合接口,一个Collection代表一组Object,即Collection的元素(Elements).一些Collection允许相同的 ...

  7. golang中的异常处理

    1. defer是go提供的一种资源处理的方式.defer的用法遵循3个原则在defer表达式被运算的同时,defer函数的参数也会被运算.如下defer的表达式println运算的同时,其入参i也会 ...

  8. Kubernetes中部署wordpress+mysql(六)

    经过前面的内容其实对k8s已经有了服务迁移的能力了,下面这篇文章主要是用来搭建一些后面要用的组件 一.创建wordpress命名空间 kubectl create namespace wordpres ...

  9. linux中三剑客之一grep命令

    目录 一:grep语法格式: 二:参数: 三:正则表达式 1.linux正则表达式 2.普通正则表达式 四:正则与grep实战案例实战: grep简介: linux 三剑客之一,文本过滤器(根据文本内 ...

  10. python函数位置实参传参

    #!/usr/bin/python #coding=utf-8 #好好学习,天天向上 def describe_pet(type,name): print(f"i have a {type} ...