\(\mathcal{Description}\)

  Link.

  给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x_i)\equiv y_i\pmod{998244353}\)。

  \(n\le10^5\)。

\(\mathcal{Solution}\)

  摆出 Lagrange 插值的式子:

\[f(z)=\sum_{i=1}^ny_i\prod_{j\neq i}\frac{z-x_j}{x_i-x_j}.
\]

现在的问题是分母上的 \(\prod_{j\neq i}(x_i-x_j)\) 不好求。若令

\[g(x)=\prod_{i=1}^n(x-x_i),
\]

\[f(z)=\sum_{i=1}^ny_i\left(\lim_{x\rightarrow x_i}\frac{g(x)}{x-x_i}\right)\prod_{i\neq j}(z-x_j).
\]

中间的 \(\lim\) 可以直接洛出来啊,也可以构造 \(\lim_{x\rightarrow x_i}\frac{g(x)}{x-x_i}=\lim_{x\rightarrow x_i}\frac{g(x)-g(x_i)}{x-x_i}\),整理得到

\[f(z)=\sum_{i=1}^n\frac{y_i}{g'(x_i)}\prod_{i\neq j}(z-x_j).
\]

先分治求出 \(g\),然后多点求值求得 \(g'(x_i)\),再分治求出 \(f\) 即可。注意求 \(g\) 的过程量 \(\prod_{i=l}^r(z-x_i)\) 翻转系数就得到多点求值要用的 \(\prod_{i=l}^r(1-x_iz)\),可以节约一点常数。最终复杂度 \(\mathcal O(n\log^2 n)\)。

\(\mathcal{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i) typedef std::vector<int> Poly; const int MAXN = 1 << 18, MOD = 998244353;
int n, x[MAXN + 5], y[MAXN + 5];
Poly X[MAXN << 2]; inline int mul(const int u, const int v) { return 1ll * u * v % MOD; }
inline int sub(int u, const int v) { return (u -= v) < 0 ? u + MOD : u; }
inline int add(int u, const int v) { return (u += v) < MOD ? u : u - MOD; }
inline int mpow(int u, int v) {
int ret = 1;
for (; v; u = mul(u, u), v >>= 1) ret = mul(ret, v & 1 ? u : 1);
return ret;
} namespace PolyOper { const int G = 3;
int omega[19][MAXN + 5]; inline void init() {
rep (i, 1, 18) {
int* wi = omega[i];
wi[0] = 1, wi[1] = mpow(G, MOD - 1 >> i);
rep (j, 2, (1 << i) - 1) wi[j] = mul(wi[j - 1], wi[1]);
}
} inline void ntt(Poly& u, const int tp) {
static int rev[MAXN + 5]; int n = u.size();
rep (i, 0, n - 1) rev[i] = rev[i >> 1] >> 1 | (i & 1) * n >> 1;
rep (i, 0, n - 1) if (i < rev[i]) std::swap(u[i], u[rev[i]]);
for (int i = 1, stp = 1; stp < n; ++i, stp <<= 1) {
int* wi = omega[i];
for (int j = 0; j < n; j += stp << 1) {
rep (k, j, j + stp - 1) {
int ev = u[k], ov = mul(wi[k - j], u[k + stp]);
u[k] = add(ev, ov), u[k + stp] = sub(ev, ov);
}
}
}
if (!~tp) {
int inv = mpow(n, MOD - 2);
std::reverse(u.begin() + 1, u.end());
for (int& a: u) a = mul(a, inv);
}
} inline Poly padd(Poly u, Poly v) {
if (u.size() < v.size()) u.swap(v);
rep (i, 0, int(v.size()) - 1) u[i] = add(u[i], v[i]);
return u;
} inline Poly pmul(Poly u, Poly v) {
int res = u.size() + v.size() - 1, len = 1;
while (len < res) len <<= 1;
u.resize(len), v.resize(len);
ntt(u, 1), ntt(v, 1);
rep (i, 0, len - 1) u[i] = mul(u[i], v[i]);
ntt(u, -1);
return u.resize(res), u;
} inline Poly pmulT(Poly u, Poly v) {
int n = u.size(), m = v.size();
std::reverse(v.begin(), v.end()), v = pmul(u, v);
rep (i, 0, n - 1) u[i] = v[i + m - 1];
return u;
} inline void pinv(const int n, const Poly& u, Poly& r) {
if (n == 1) return void(r = { { mpow(u[0], MOD - 2) } });
static Poly tmp; pinv(n >> 1, u, r);
tmp.resize(n << 1), r.resize(n << 1);
rep (i, 0, n - 1) tmp[i] = i < u.size() ? u[i] : 0;
rep (i, n, (n << 1) - 1) tmp[i] = 0;
ntt(r, 1), ntt(tmp, 1);
rep (i, 0, (n << 1) - 1) r[i] = mul(r[i], sub(2, mul(tmp[i], r[i])));
ntt(r, -1), r.resize(n);
} } // namespace PolyOper. inline void init(const int u, const int l, const int r) {
if (l == r) return void(X[u] = { { 1, sub(0, x[l]) } });
int mid = l + r >> 1;
init(u << 1, l, mid), init(u << 1 | 1, mid + 1, r);
X[u] = PolyOper::pmul(X[u << 1], X[u << 1 | 1]);
} inline void calcG(const int u, const int l, const int r, Poly F) {
F.resize(r - l + 1);
if (l == r) return void(y[l] = mul(y[l], mpow(F[0], MOD - 2)));
int mid = l + r >> 1;
calcG(u << 1, l, mid, PolyOper::pmulT(F, X[u << 1 | 1]));
calcG(u << 1 | 1, mid + 1, r, PolyOper::pmulT(F, X[u << 1]));
} inline Poly calcF(const int u, const int l, const int r) {
std::reverse(X[u].begin(), X[u].end());
if (l == r) return { { y[l] } };
int mid = l + r >> 1;
Poly &&p(calcF(u << 1, l, mid)), &&q(calcF(u << 1 | 1, mid + 1, r));
return PolyOper::padd(PolyOper::pmul(p, X[u << 1 | 1]),
PolyOper::pmul(q, X[u << 1]));
} int main() {
scanf("%d", &n);
rep (i, 0, n - 1) scanf("%d %d", &x[i], &y[i]); PolyOper::init(), init(1, 0, n - 1); int len = 1; while (len < n) len <<= 1;
Poly T; PolyOper::pinv(len, X[1], T);
Poly Q(X[1]); std::reverse(Q.begin(), Q.end());
rep (i, 0, n - 1) Q[i] = mul(i + 1, Q[i + 1]);
Q.resize(n); calcG(1, 0, n - 1, PolyOper::pmulT(Q, T));
Poly&& ans = calcF(1, 0, n - 1);
for (int u: ans) printf("%d ", u);
putchar('\n');
return 0;
}

Note/Solution -「洛谷 P5158」「模板」多项式快速插值的更多相关文章

  1. 【洛谷P5158】 【模板】多项式快速插值

    卡常严重,可有采用如下优化方案: 1.预处理单位根 2.少取几次模 3.复制数组时用 memcpy 4.进行多项式乘法项数少的时候直接暴力乘 5.进行多项式多点求值时如果项数小于500的话直接秦九昭展 ...

  2. 洛谷P5158 【模板】多项式快速插值

    题面 传送门 前置芝士 拉格朗日插值,多项式多点求值 题解 首先根据拉格朗日插值公式我们可以暴力\(O(n^2)\)插出这个多项式,然而这显然是\(gg\)的 那么看看怎么优化,先来看一看拉格朗日插值 ...

  3. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

  4. 模板【洛谷P3390】 【模板】矩阵快速幂

    P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...

  5. 【洛谷P5050】 【模板】多项式多点求值

    code: #include <bits/stdc++.h> #define ll long long #define ull unsigned long long #define set ...

  6. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  7. 「 洛谷 」P2768 珍珠项链

    珍珠项链 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 题目来源 「 洛谷 」P2768 珍珠项链 ...

  8. 「 洛谷 」P4539 [SCOI2006]zh_tree

    小兔的话 推荐 小兔的CSDN [SCOI2006]zh_tree 题目限制 内存限制:250.00MB 时间限制:1.00s 标准输入输出 题目知识点 思维 动态规划 \(dp\) 区间\(dp\) ...

  9. 「 洛谷 」P2151 [SDOI2009]HH去散步

    小兔的话 欢迎大家在评论区留言哦~ HH去散步 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入 标准输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 ...

随机推荐

  1. Nginx 防爬虫设置

    在conf下  vi 一个文件agent_deny.conf 添加如下内容 #禁止Scrapy|curl等工具的抓取 if ($http_user_agent ~* (Scrapy|Curl|Http ...

  2. 第10组 Beta冲刺 (3/5)(组长)

    1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/p/14018630.html ·作业博客:https://edu.cnblogs.co ...

  3. Linux上天之路(十五)之文件查找

    主要内容 精确查找 模糊查找 1. 精确查找 find - search for files in a directory hierarchy 递归地在层次目录中处理文件 查找方式: 按文件属性查找 ...

  4. httprunner3.x全网最详细教程

    一.所需环境 wiindows10以上 python3.6以上 httprunner3.1.6(最新版本) pycharm社区版 二.安装httprunner 1.卸载旧版本 卸载之前版本的命令为:p ...

  5. kali linux2020 虚拟机改root密码

    kali在2020版的更新中,好多小伙伴登不进root账号,这里来教大家怎样改root账户的密码 1.当我们打开虚拟机看到这个界面的时候,按e进入编辑模式 2.在编辑模式中,"quite s ...

  6. dart系列之:和null说再见,null使用最佳实践

    目录 简介 不需要初始化对象为null null的三元操作符 如果在使用中需要判断类型是否为空,则不要使用late 本地变量的类型提升 总结 简介 null可能是大家在编写程序中最为头疼的一个东西,稍 ...

  7. (2)用Micropython将ESP32数据上云

    之前我们尝试过直接把LED点亮并且闪烁. 今天尝试一下将LED的开关状态上云,并可以通过云来进行数据下发. 数据要上云,首先开发板要联网. 首先我们会用 Python的network 库, 在netw ...

  8. linux新分区无法新建文件夹

    问题 因为最初分区480g随便都给了home,后来发现备份以及导出系统至IOS都要另外插硬盘很麻烦.所以需要重新分区.使用装机U盘的live ubuntu20系统使用Gparted分区后,发现回到Ub ...

  9. Cesium源码剖析---Clipping Plane

    之前就一直有写博客的想法,别人也建议写一写,但一直没有动手写,自己想了一下原因,就一个字:懒.懒.懒.为了改掉这个毛病,决定从今天开始写博客了,一方面对自己掌握的知识做一个梳理,另一方面和大家做一个交 ...

  10. 将Cesium Tools用于更好的构建管理

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ Cesium技术正在给建筑业带来革命性的变化.我们与 partn ...