Solution -「APIO/CTSC 2007」「洛谷 P3620」数据备份
\(\mathcal{Description}\)
Link.
给定升序序列 \(\{x_n\}\) 以及整数 \(k\),在 \(\{x_n\}\) 中选出恰 \(k\) 对 \((x_i,x_j)\),使得不存在某个值出现次数多于一次,并最小化 \(\sum|x_i-x_j|\)。
\(\mathcal{Solution}\)
告诉我,你有一个错误的贪心 owo!
显然 \((x_i,x_j)\) 是相邻的两个数。令 \(a_i=x_{i+1}-x_i\),问题转化为选 \(k\) 个 \(a_i\) 使其和最小,并保证 \(a_i\) 被选后 \(a_{i-1}\) 和 \(a_{i+1}\) 不被选。
贪心取最小是不可取的,样例就是反例。不过可以使用网络流退流的思想挽救这个贪心。每次取出最小值 \(a_i\) 时,将 \(a_i\) 的值置为 \(a_{i-1}+a_{i+1}-a_i\) 并重新入堆,同时删除在序列上 \(a_{i-1}\) 和 \(a_{i+1}\)(这里的下标加减法指前驱后继,因为有些数已经被删掉了)。考虑再次选择 \(a_i\) 时所表达的方案:
初始:
\]
选 \(a_i\),此时答案 \(ans=a_i\);并重置 \(a_i\),删前驱后继:
\]
再选 \(a_i\),此时答案 \(ans=a_i+a_{i-1}+a_{i+1}-a_i=a_{i-1}+a_{i+1}\),再重置,删除:
\]
可以发现,这与直接选 \(a_{i-2}\) 和 \(a_{i+2}\) 是等效的!所以维护一个双向链表,利用堆进行贪心即可。
复杂度 \(\mathcal O(n\log n)\)。
\(\mathcal{Code}\)
#include <queue>
#include <cstdio>
typedef long long LL;
typedef std::pair<LL, int> pli;
const int MAXN = 1e5;
int n, K, pre[MAXN + 5], suf[MAXN + 5];
LL val[MAXN + 5];
bool rmd[MAXN + 5];
std::priority_queue<pli, std::vector<pli>, std::greater<pli> > heap;
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline void rmpos ( const int u ) {
if ( ! u || u == n ) return ;
rmd[u] = true;
if ( pre[u] ) suf[pre[u]] = suf[u];
if ( suf[u] ^ n ) pre[suf[u]] = pre[u];
pre[u] = suf[u] = 0;
}
int main () {
n = rint (), K = rint ();
for ( int i = 0, p, las; i < n; ++ i ) {
p = rint ();
if ( i ) {
heap.push ( { val[i] = p - las, i } );
pre[i] = i - 1, suf[i] = i + 1;
}
las = p;
}
LL ans = 0;
val[0] = val[n] = 1ll << 60;
while ( K -- ) {
pli t = heap.top (); heap.pop ();
if ( rmd[t.second] ) { ++ K; continue; }
ans += t.first; LL nv = -t.first;
nv += val[pre[t.second]], rmpos ( pre[t.second] );
nv += val[suf[t.second]], rmpos ( suf[t.second] );
heap.push ( { val[t.second] = nv, t.second } );
}
printf ( "%lld\n", ans );
return 0;
}
Solution -「APIO/CTSC 2007」「洛谷 P3620」数据备份的更多相关文章
- 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- P3620 [APIO/CTSC 2007]数据备份
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
随机推荐
- spring cloud --- Ribbon 客户端负载均衡 + RestTemplate + Hystrix 熔断器 [服务保护] ---心得
spring boot 1.5.9.RELEASE spring cloud Dalston.SR1 1.前言 当超大并发量并发访问一个服务接口时,服务器会崩溃 ,不仅导致这个接口无法 ...
- elasticsearch在linux上的安装,Centos7.X elasticsearch 7.6.2安装
本文环境:Elasticsearch7.6.2目前最先版本 centos7.X JDK1.8 elasticsearch介绍 官网:https://www.elastic.co/cn/pr ...
- Python函数与lambda 表达式(匿名函数)
Python函数 一.函数的作用 函数是组织好的,可重复使用的,用来实现单一或相关联功能的代码段 函数能提高应用的模块性和代码的重复利用率 python 内置函数:https://docs.pytho ...
- XRecyclerView:实现下拉刷新、滚动到底部加载更多以及添加header功能的RecyclerView
介绍: 一个实现了下拉刷新,滚动到底部加载更多以及添加header功能的的RecyclerView.使用方式和RecyclerView完全一致,不需要额外的layout,不需要写特殊的adater. ...
- nRF24L01基于FIFO TX队列的发送性能优化
RF24项目代码分析 头文件 https://github.com/nRF24/RF24/blob/master/RF24.h 源文件 https://github.com/nRF24/RF24/bl ...
- 【小问题】为啥乱搞就不行,golang没安装在系统目录下,导致go get出现"package bytes: directory "/home/ahfu/go/src/bytes" is not using a known version control system"
想在自己的账号下安装golang开发环境,于是这样配置: wget https://dl.google.com/go/go1.14.2.linux-amd64.tar.gz cd /home/ahfu ...
- nodejs express异常捕获
参考链接: http://blog.coinidea.com/web开发/nodejs-1131.html 由于nodejs是非阻塞单进程单线程的,一旦nodejs抛出异常,整个服务就会停掉.服务将会 ...
- [源码分析] Facebook如何训练超大模型 --- (3)
[源码分析] Facebook如何训练超大模型 --- (3) 目录 [源码分析] Facebook如何训练超大模型 --- (3) 0x00 摘要 0x01 ZeRO-Offload 1.1 设计原 ...
- Go 常用函数
#### Go 常用函数,错误处理这一节我们来学习一下Go 常用的函数,这些函数有些是内置的,有些是官方标准库内的, 熟悉这些函数对程序开发来讲还是很重要的; 1. len("abc&quo ...
- IoC容器(底层原理)
IoC(概念和原理) 1,什么是IoC (1)控制反转,把对象创建和对象之间的调用过程,交给Spring进行管理 (2)使用IoC目的:为了降低耦合度 (3)做入门案例就是IoC实现 2,IoC底层原 ...