Solution -「LOCAL」人口迁徙
\(\mathcal{Description}\)
\(n\) 个点,第 \(i\) 个点能走向第 \(d_i\) 个点,但从一个点出发至多走 \(k\) 步。对于每个点,求有多少点能够走到它。
\(n\le5\times10^5\)。
\(\mathcal{Solution}\)
显然这些点构成一片内向基环树森林。考虑每个点的贡献,若其向上走 \(k\) 步仍不能到环上,那一定只在树内对一条链贡献,树上差分一下。否则,该点会向到根的每个点贡献,并向环上一段连续的点贡献,后者维护一个数列差分亦可统计,就切掉啦。
复杂度 \(\mathcal O(n)\)。
\(\mathcal{Code}\)
#include <cstdio>
#include <vector>
#include <algorithm>
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline void wint ( const int x ) {
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 5e5;
int n, K, d[MAXN + 5], ans[MAXN + 5], stk[MAXN + 5], top, ccnt;
bool vis[MAXN + 5], oncir[MAXN + 5], inq[MAXN + 5];
int dep[MAXN + 5], fa[MAXN + 5], dir[MAXN + 5], tag[MAXN + 5], add[MAXN * 2 + 5];
std::vector<int> cir[MAXN + 5], adj[MAXN + 5];
inline void findCir ( const int u ) {
if ( vis[u] ) return ;
vis[u] = true, stk[++ top] = u, inq[u] = true;
if ( inq[d[u]] ) {
int v; ++ ccnt;
do {
oncir[v = stk[top --]] = true;
cir[ccnt].push_back ( v );
} while ( v ^ d[u] );
std::reverse ( cir[ccnt].begin (), cir[ccnt].end () );
}
findCir ( d[u] ), inq[u] = false;
}
inline void solveTree ( const int u, int p, const int rtid, const int L ) {
++ tag[u];
if ( dep[u] <= K ) {
int tar = K - dep[u] + 1;
if ( tar >= L ) tar = L - 1;
++ add[rtid + 1], -- add[rtid + 1 + tar];
} else {
-- tag[fa[p]], p = dir[p];
}
for ( int i = 0, v; i ^ adj[u].size (); ++ i ) {
if ( !oncir[v = adj[u][i]] ) {
dep[dir[u] = v] = dep[u] + 1, fa[v] = u;
solveTree ( v, p, rtid, L );
}
}
}
inline int calc ( const int u ) {
int ret = tag[u];
for ( int i = 0, v; i ^ adj[u].size (); ++ i ) {
if ( !oncir[v = adj[u][i]] ) {
ret += calc ( v );
}
}
return ans[u] += ret, ret;
}
inline void solveCir ( std::vector<int>& cir ) {
int L = cir.size ();
for ( int i = 0; i <= L << 1; ++ i ) add[i] = 0;
for ( int i = 0, u; i < L; ++ i ) {
dep[u = cir[i]] = 1;
solveTree ( u, u, i, L ), calc ( u );
}
for ( int i = 1; i < L * 2; ++ i ) add[i] += add[i - 1];
for ( int i = 0; i < L; ++ i ) ans[cir[i]] += add[i] + add[i + L];
}
int main () {
freopen ( "travel.in", "r", stdin );
freopen ( "travel.out", "w", stdout );
n = rint (), K = rint ();
for ( int i = 1; i <= n; ++ i ) adj[d[i] = rint ()].push_back ( i );
for ( int i = 1; i <= n; ++ i ) top = 0, findCir ( i );
for ( int i = 1; i <= ccnt; ++ i ) solveCir ( cir[i] );
for ( int i = 1; i <= n; ++ i ) wint ( ans[i] ), putchar ( '\n' );
return 0;
}
\(\mathcal{Details}\)
考场上想得久了点 qwq……最神奇的是兔子爆排一般是因为标算写假而测试代码是对的。(
Solution -「LOCAL」人口迁徙的更多相关文章
- Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...
- Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...
- Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...
- Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...
- Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\) 给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...
- Solution -「LOCAL」画画图
\(\mathcal{Description}\) OurTeam. 给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...
- Solution -「LOCAL」ZB 平衡树
\(\mathcal{Description}\) OurOJ. 维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...
- Solution -「LOCAL」舟游
\(\mathcal{Description}\) \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...
- Solution -「LOCAL」充电
\(\mathcal{Description}\) 给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...
随机推荐
- [Docker] 在CentOS6.8 安装 Docker
运行docker Linux内核版本需要在3.8以上,针对centos6.5 内核为2.6的系统需要先升级内核.不然会特别卡,退出容器. # 查看当前版本: cat /etc/issue # 导入pu ...
- java 关于 重写、覆写、覆盖、重载 的总结【不想再傻傻分不清了】
1.前言 有些东西,名称不同,其实就是一个东西,你说是扯淡不? 2.重写 重写,又叫覆写.覆盖 ,注解@Override,词义为推翻 , 用法特点是继承父类后,重写的父类方法名字.参数.返回值必须相同 ...
- 下载并搭建maven环境
1.下载maven 1.在官网下载maven http://maven.apache.org/download.cgi 2.将下载maven解压.复制路径. 2.搭建maven环境 1.新建M2_H ...
- vue2.0点击其他任何地方隐藏dom
methods: { handleBodyClick(){ if (绿色区域出来了,要判断点击其他地方就要关闭,这样可以避免绿色区域已经关闭还在操作) { let _con = $(目标区域) if ...
- 拉普拉斯平滑(Laplacian smoothing)
概念 零概率问题:在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是 $0$ .这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该 ...
- Rust 实现Netty HashedWheelTimer时间轮
目录 一.背景 二.延迟队列-时间轮 三.Netty 时间轮源码分析 四.Rust实现HashedWheelTimer 五.总结思考 一.背景 近期在内网上看到一篇文章,文中提到的场景是 系统自动取消 ...
- opencv 4.0 + linux下静态编译,展示详细ccmake的参数配置
#先安装 cmake 3.14 # cmake安装到了 /usr/local/bin #配置PATH export PATH="$PATH:/usr/local/bin" #下载最 ...
- 【记录一个问题】opencv官网的opencv android sdk使用opencl并未用到GPU
UMat u_mat;mat.copyTo(u_mat);cv::cvtColor(u_mat, cv::BGR2GARY);这样的代码反复执行,并未发现GPU占用提升.执行时间与不使用UMat相当. ...
- Natasha 4.0 探索之路系列(二) "域"与插件
域与ALC 在 Natasha 发布之后有不少小伙伴跑过来问域相关的问题, 能不能兼容 AppDomain, 如何使用 AppDomain, 为什么 CoreAPI 阉割了 AppDomain 等一系 ...
- 一文读懂HarmonyOS服务卡片怎么换肤
作者:zhenyu,华为软件开发工程师 关注HarmonyOS的小伙伴肯定对服务卡片已经很熟悉了.服务卡片(也简称为"卡片")是FA(FeatureAbility,元服务)的一种界 ...