转:评估指标MAP
转:http://www.zhenv5.com/?p=1079
MAP可以由它的三个部分来理解:P,AP,MAP
正确率只是考虑了返回结果中相关文档的个数,没有考虑文档之间的序。对一个搜索引擎或推荐系统而言返回的结果必然是有序的,而且越相关的文档排的越靠前越好,于是有了AP的概念。对一个有序的列表,计算AP的时候要先求出每个位置上的precision,然后对所有的位置的precision再做个average。如果该位置的文档是不相关的则该位置 precision=0.
举个例子(修改了引用[1]的例子):
| Prediction | Correctness | Points |
| 1 | wrong | 0 |
| 2 | right | 1 / 2 |
| 3 | right | 2 / 3 |
| 4 | wrong | 0 |
| 5 | right | 3 / 5 |
| 6 | wrong | 0 |
| 7 | wrong | 0 |
| 8 | wrong | 0 |
| 9 | right | 4 / 9 |
| 10 | wrong | 0 |
具体求解:
假设有两个查询,查询1有4个相关文档,查询2有5个相关文档。某系统对查询1检索出4个相关文档,其rank分别为1,2,4,7;对于查询2检索出3个相关文档,其rank分别为1,3,5。
对于查询1,AP平均正确率为:(1/1+2/2+3/4+4/7)/4=0.83
对于查询2,AP平均正确率为:(1/1+2/3+3/5)/5=0.45
代码:
Github地址:https://github.com/JK-SUN/MLandDM-EvaluationMeasures 欢迎拍砖
参考:
[1]Alternate explanation of Mean Average Precision
[2]信息检索系统导论
转:评估指标MAP的更多相关文章
- 聚类结果的评估指标及其JAVA实现
一. 前言 又GET了一项技能.在做聚类算法的时候,由于要评估所提出的聚类算法的好坏,于是需要与一些已知的算法对比,或者用一些人工标注的标签来比较,于是用到了聚类结果的评估指标.我了解了以下几项. 首 ...
- opencv-9-图像噪声以及评估指标 PSNR 与SSIM
开始之前 我们在将 opencv 的图像显示在了 qt 的label 上, 我们能够将图显示在label 上, 用于显示我们的算法, 我们在 opencv 上一篇文章中介绍了 opencv 的核操作, ...
- 评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)
为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间 ...
- [DeeplearningAI笔记]ML strategy_1_1正交化/单一数字评估指标
机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 什么是ML策略 机器学习策略简介 情景模拟 假设你正在训练一个分类器,你的系统已经达到了90%准确 ...
- 【机器学习】--模型评估指标之混淆矩阵,ROC曲线和AUC面积
一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图: 第一个参数true,false是指预测的正确性. 第二个参数true,p ...
- Python机器学习笔记:常用评估指标的用法
在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法 ...
- (转)深度学习目标检测指标mAP
深度学习目标检测指标mAP https://github.com/rafaelpadilla/Object-Detection-Metrics 参考上面github链接中的readme,有详细描述
- 评估指标:ROC,AUC,Precision、Recall、F1-score
一.ROC,AUC ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣 . ROC曲线一般的 ...
- 【Udacity】机器学习性能评估指标
评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) ...
随机推荐
- OpenStack入门篇(八)之镜像服务Glance
一.Glance的概述 Glance是为虚拟机的创建提供镜像的服务,我们基于Openstack是构建基本的IaaS平台对外提供虚拟机,而虚拟机在创建时必须为选择需要安装的操作系统,Glance服务就是 ...
- HBase第二章 基本API
1.pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www ...
- MySQL数据库之安装,基本操作
一.基础部分 1.数据库是什么 之前所学,数据要永久保留,比如用户注册的用户信息,都是保存于文件,而文件只能存在于某一台机器上. 如果我们不考虑从文件中读取数据的效率问题,并且假设我们的程序所有的组件 ...
- 「日常训练」Jongmah(Codeforces-1110D)
题意 你有n个数字,范围[1, m],你可以选择其中的三个数字构成一个三元组,但是这三个数字必须是连续的或者相同的,每个数字只能用一次,问这n个数字最多构成多少个三元组? 分析 根据官方Editori ...
- LUIS 语义识别API调用方法
本例使用itchat获取微信文字消息,发送给LUIS返回识别消息,再将返回消息格式化后通过微信发回 关于itchat的使用参考我的另外一篇随笔itchat个人练习 语音与文本图灵测试例程 # -*- ...
- 如何解决Django与Vue语法的冲突
当我们在django web框架中,使用vue的时候,会遇到语法冲突.因为vue使用{{}},而django也使用{{}},因此会冲突. 解决办法1:在django1.5以后,加入了标签:{% ver ...
- 04-容器 What, Why, How
What - 什么是容器? 容器是一种轻量级.可移植.自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行.开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机 ...
- Visionpro学习网
重码网是一个在线机器视觉学习网站,推出了Halcon,Visionpro机器视觉学习视频教程,视频内容通俗易懂,没有编程基础的同学,照着视频练习,也同样可以学会. 学机器视觉,拿高薪,成就技术大拿.重 ...
- scrum立会报告+燃尽图(第三周第七次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2286 项目地址:https://coding.net/u/wuyy694 ...
- 20162328蔡文琛 Java课程总结
20162328 2016-2017-2<程序设计与数据结构>课程总结 一.每周作业.结对编程博客的链接汇总 预备作业01 20162328:表达对专业的期许.浅谈师生关系.对未来学习任务 ...