Description

a180285非常喜欢滑雪。他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi。a180285能从景点i 滑到景点j 当且仅当存在一条i 和j 之间的边,且i 的高度不小于j。 与其他滑雪爱好者不同,a180285喜欢用最短的滑行路径去访问尽量多的景点。如果仅仅访问一条路径上的景点,他会觉得数量太少。于是a180285拿出了他随身携带的时间胶囊。这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是a180285 滑行的距离)。请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。 现在,a180285站在1号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间

胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?

Input

输入的第一行是两个整数N,M。

接下来1行有N个整数Hi,分别表示每个景点的高度。

接下来M行,表示各个景点之间轨道分布的情况。每行3个整数,Ui,Vi,Ki。表示

编号为Ui的景点和编号为Vi的景点之间有一条长度为Ki的轨道。

Output

输出一行,表示a180285最多能到达多少个景点,以及此时最短的滑行距离总和。

Sample Input

3 3

3 2 1

1 2 1

2 3 1

1 3 10

Sample Output

3 2

HINT

【数据范围】

对于30%的数据,保证 1<=N<=2000

对于100%的数据,保证 1<=N<=100000

对于所有的数据,保证 1<=M<=1000000,1<=Hi<=1000000000,1<=Ki<=1000000000。

Solution

另类kruskal

第一问直接bfs

第二问如果直接跑最小生成树,可能会弄出不连通的图,因为kruskal是对于无向图的。那么这题的有向图,我们可以让它变得有序,从而使kruskal变得正确,连出的图联通。第一关键字按照终点的高度从大到小,第二关键字按照边的长度,将边排序。

首先,高度一样时,各个景点可以互相到达,那么就是个无向图了,边越短越先选;如果高度不一样,那么只有先连高度更高的,才能到达高度更低的,保证所有点与 \(1\) 号点联通。

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100000+10,MAXM=1000000+10;
int n,m,h[MAXN],fa[MAXN],p[MAXN],use[MAXN],e,to[MAXM<<1],nex[MAXM<<1],beg[MAXN],snt;
ll ans1,ans2;
std::queue<int> q;
struct node{
int u,v,k;
inline bool operator < (const node &A) const {
return h[v]>h[A.v]||(h[v]==h[A.v]&&k<A.k);
};
};
node side[MAXM<<1];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void bfs()
{
p[1]=1;
q.push(1);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;use[x]=1;
for(register int i=beg[x];i;i=nex[i])
if(!p[to[i]]&&!use[to[i]])p[to[i]]=1,q.push(to[i]);
}
for(register int i=1;i<=n;++i)
if(use[i])ans1++;
}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
int main()
{
read(n);read(m);
for(register int i=1;i<=n;++i)read(h[i]);
for(register int i=1;i<=m;++i)
{
int u,v,k;read(u);read(v);read(k);
if(h[u]>=h[v])side[++snt]=(node){u,v,k},insert(u,v);
if(h[v]>=h[u])side[++snt]=(node){v,u,k},insert(v,u);
}
bfs();
std::sort(side+1,side+snt+1);
for(register int i=1;i<=n;++i)fa[i]=i;
for(register int i=1;i<=snt;++i)
{
if(!use[side[i].u]||!use[side[i].v])continue;
int u=found(side[i].u),v=found(side[i].v);
if(u!=v)ans2+=side[i].k,fa[u]=v;
}
write(ans1,' ');write(ans2,'\n');
return 0;
}

【刷题】BZOJ 2753 [SCOI2012]滑雪与时间胶囊的更多相关文章

  1. BZOJ 2753 [SCOI2012] 滑雪和时间胶囊 最小生成树

    题目链接: 题目 2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec Memory Limit: 128 MB 问题描述 a180285非常喜欢滑雪.他来到一座雪山, ...

  2. bzoj 2753: [SCOI2012]滑雪与时间胶囊 -- 最小生成树

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MB Description a180285非常喜欢滑雪.他来到一座雪山,这 ...

  3. bzoj 2753: [SCOI2012] 滑雪与时间胶囊 Label:MST

    题目描述 a180285非常喜欢滑雪.他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi.a180285 ...

  4. bzoj 2753: [SCOI2012]滑雪与时间胶囊

    Description a180285非常喜欢滑雪.他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi. ...

  5. 【BZOJ 2753】 2753: [SCOI2012]滑雪与时间胶囊 (分层最小树形图,MST)

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2457  Solved: 859 Descriptio ...

  6. 2753: [SCOI2012]滑雪与时间胶囊

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 910 Descriptio ...

  7. 【最小树形图(奇怪的kruskal)】【SCOI 2012】【bzoj 2753】滑雪与时间胶囊

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec Memory Limit: 128 MB Submit: 1621 Solved: 570 Description ...

  8. Bzoj2753 [SCOI2012]滑雪与时间胶囊

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2282  Solved: 796 Descriptio ...

  9. BZOJ2753 SCOI2012 滑雪与时间胶囊 【最小生成树】*

    BZOJ2753 SCOI2012 滑雪与时间胶囊 Description a180285非常喜欢滑雪.他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有 ...

随机推荐

  1. OpenGL ES学习笔记(二)——平滑着色、自适应宽高及三维图像生成

    首先申明下,本文为笔者学习<OpenGL ES应用开发实践指南(Android卷)>的笔记,涉及的代码均出自原书,如有需要,请到原书指定源码地址下载. <Android学习笔记--O ...

  2. 「日常训练」Jongmah(Codeforces-1110D)

    题意 你有n个数字,范围[1, m],你可以选择其中的三个数字构成一个三元组,但是这三个数字必须是连续的或者相同的,每个数字只能用一次,问这n个数字最多构成多少个三元组? 分析 根据官方Editori ...

  3. 180724-统计JVM进程中线程数两种方式小记

    I. 统计进程中的线程数 相关系列博文推荐: 180711-JVM定位分析CPU性能消耗 180704-JDK常用监控参数 jvm调优的工具介绍 1. proc查询 /proc 目录以可读文本文件形式 ...

  4. python接口自动化1-发送get请求 前言

    前言 requests模块,也就是老污龟,为啥叫它老污龟呢,因为这个官网上的logo就是这只污龟,接下来就是学习它了. 一.环境安装 1.用pip安装requests模块 >>pip in ...

  5. Linux内核学习笔记(2)-- 父进程和子进程及它们的访问方法

    Linux系统中,进程之间有一个明显的继承关系,所有进程都是 PID 为1的 init 进程的后代.内核在系统启动的最后阶段启动 init 进程.该进程读取系统的初始化脚本(initscript)并执 ...

  6. MATLAB 笔记

    MATLAB的学习 Matlab 主要有5大部分构成,分别是MATLAB语言,桌面工具与开发环境,数学函数库 ,图形系统和应用程序接口.以及众多的专业工具.

  7. hbase 预分区

    转载 http://www.cnblogs.com/bdifn/p/3801737.html

  8. Thunder团队第七周 - Scrum会议3

    Scrum会议3 小组名称:Thunder 项目名称:i阅app Scrum Master:李传康 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传 ...

  9. 2018-2019-20172321 《Java软件结构与数据结构》第四周学习总结

    2018-2019-20172321 <Java软件结构与数据结构>第四周学习总结 教材学习内容总结 第六章 6.1列表集合 列表集合是一种概念性表示法,其思想是使事物以线性列表的方式进行 ...

  10. 团队Alpha冲刺(一)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:丹丹 组员7:家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示组内 ...