解题:POI 2016 Nim z utrudnieniem
出现了,神仙题!
了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数
首先有个暴力做法:$dp[i][j][k]$表示到第$i$个为止取出来的石子数目模$d$等于$j$且剩下的石子异或和为$k$的方案数,然后就枚举转移啊=。=
发现时空复杂度好像都不能承受,不过可以尝试分析/优化一下。首先分析一波后发现时间复杂度其实是对的......只是我们需要将石子数从小到大排个序,这样一路异或下来异或到$i$时最大值不超过$2*a[i]$,复杂度是$O(dm)$的
然后根据POI的传统我们还不能滚动数组,需要卡空间......那就抓个临时数组记录一下算了=。=
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,K=,mod=1e9+;
int sto[N],mem[N],dp[K][N];
int n,d,ans,goal,maxx;
int main ()
{
scanf("%d%d",&n,&d);
for(int i=;i<=n;i++)
scanf("%d",&sto[i]),goal^=sto[i];
sort(sto+,sto+n+),dp[][]=;
for(int i=;i<=n;i++)
{
while(maxx<=sto[i]) maxx=maxx<<|;
for(int j=;j<=maxx;j++)
mem[j]=(dp[][j]+dp[d-][j^sto[i]])%mod;
for(int j=d-;j;j--)
for(int k=;k<=maxx;k++)
dp[j][k]+=dp[j-][k^sto[i]],dp[j][k]%=mod;
for(int j=;j<=maxx;j++) dp[][j]=mem[j];
}
ans=(dp[][goal]-(n%d==)+mod)%mod;
printf("%d",ans);
return ;
}
解题:POI 2016 Nim z utrudnieniem的更多相关文章
- bzoj 4347 [POI2016]Nim z utrudnieniem DP
4347: [POI2016]Nim z utrudnieniem Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 733 Solved: 281[Su ...
- BZOJ4347 : [POI2016]Nim z utrudnieniem
将石子从小到大排序,然后DP. 设$f[i][j][k]$表示考虑了前$i$堆的石子,当前扔掉的堆数模$d$为$j$,没有扔掉的石子的异或和为$k$的方案数. 因为石子排过序,所以转移的复杂度为$O( ...
- [POI2016]Nim z utrudnieniem
Description A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取.谁先不能操作,谁 ...
- 【bzoj4347】[POI2016]Nim z utrudnieniem dp
题解: 感觉我简直是个傻逼 把题目数据范围看错了.. 然后觉得这题非常的不可做 sigmaai <1e7.... 这题的dp是非常简单的,注意到d很小 f[i][j][k]表示前i个,%d为j, ...
- BZOJ4347 POI2016Nim z utrudnieniem(博弈+动态规划)
由nim游戏的结论,显然等价于去掉一些数使剩下的数异或和为0. 暴力的dp比较显然,设f[i][j][k]为前i堆移走j堆(模意义下)后异或和为k的方案数.注意到总石子数量不超过1e7,按ai从小到大 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- yd的拔钉子之路之 POI 2017
写在前面的一些话 如果我NOIP没退役,这大概会写成一个系列吧,所以这算是系列的开始,要写一些奇怪的东西? 首先解释下什么叫“拔钉子”,其实就是在钉子上做题嘛......至于钉子具体是个什么东西就当面 ...
- leetcode第6题:Z字形变换--直接模拟求解法
[题目描述] 将一个给定字符串根据给定的行数,以从上往下.从左到右进行 Z 字形排列. 比如输入字符串为 "LEETCODEISHIRING" 行数为 3 时,排列如下: 之后,你 ...
- LeetCode解题Golang(1-10)
前言 LeetCode题目个人答案(Golang版) 本篇预期记录 1-10 题, 持续更新 正文 1.两数之和(简单) https://leetcode-cn.com/problems/two-su ...
随机推荐
- centos 7 安装和基本配置
U盘安装centos 7 还是官方文档最准确. 下载centos https://docs.centos.org/en-US/centos/install-guide/downloading/ 制作安 ...
- MySQL5.6.14从安装到启动全过程
1.下载 地址:http://dev.mysql.com/downloads/mysql/ 这里选择的是Linux-Generic平台,下载了MySQL-5.6.14-1.linux_glibc2.5 ...
- [转]50 Tips for Working with Unity (Best Practices)
About these tips These tips are not all applicable to every project. They are based on my experience ...
- 【转载】IntelliJ IDEA 2017常用快捷键
IntelliJ IDEA 是一款致力于提供给开发工程师沉浸式编程体验的IDE工具,所以在其中提供了很多方便高效的快捷键,一旦熟练掌握,整个开发的效率和体验将大大提升.本文就按照笔者自己日常开发时的使 ...
- python-__getattr__ 和 __getattribute__
python3完全使用了新式类,废弃了旧式类,getattribute作为新式类的一个特性有非常奇妙的作用.查看一些博客和文章后,发现想要彻底理解getattr和getattribute的区别,实际上 ...
- CsvHelper文档-6类型转换
CsvHelper文档-6类型转换 CsvHelper使用类型转换器来转换string到对象,或者对象到string: ITypeConverter 类型转换器的结构,必须实现: public int ...
- OpenLDAP备份和恢复
OpenLDAP中数据备份一般分为二种: 1)通过slapcat 指令进行备份 2)通过phpLDAPadmin控制台进行备份 备份方式1: 1)slapcat -v -l openldap-back ...
- loadrunner socket协议问题归纳(5)
获取服务器的返回值,可以用web_reg_save_param函数,该参数最好放到: 语法: int web_reg_save_param(const char *ParamName, <lis ...
- 【算法设计与数据结构】为何程序员喜欢将INF设置为0x3f3f3f3f?(转)
摘自https://blog.csdn.net/jiange_zh/article/details/50198097 在算法竞赛中,我们常常需要用到一个“无穷大”的值,对于我来说,大多数时间我会根据具 ...
- Floyd模板(详细操作最基础版)
#include<cstdio> #include<iostream> using namespace std; #define MAX 500 #define INFE 1& ...