【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)
【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)
题面
题解
这题\(75\)分就是送的,我什么都不想写。
先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后
把它减一,就变成了\(0\)。接着后面的数显然还是一个斐波那契数列
只是都乘了\(0\)之前的那个数作为倍数而已。
拿样例举个例子?以下数字都在模\(7\)意义下进行
1 1 2 3 5 0(1)
5 5 3 0(1)
3 3 6 2 0(1)
大概就是这样子。
当然,如果我们继续手玩下去,也许可以发现点什么?
1 1 2 3 5 0(1)
5 5 3 0(1)
3 3 6 2 0(1)
2 2 4 6 3 2 5 0
5 5 3 0(1)
似乎出现了循环???
那么,我们似乎可以按照找到末尾的\(0\),找下一行的零,找到循环节这样的步骤来。
至于这个循环节的长度相关的问题,可以看看Vfk的博客。orz
考虑一下怎么计算这个\(0\)的位置?事实上是在找\(1\)的位置
而上面举例中的每一行都是一个斐波那契数列乘上\(x\)
其中\(x\)是上一行中倒数第二个数字
那么,\(fib[len]*x=1\),而\(x\)对于我们来说是一个已知项
所以这个过程变成了一个求逆的过程。
而有根据\(vfk\)的博客,斐波那契数列在模\(K\)意义下的循环节长度不超过\(6K\)
所以我们可以暴力算一个循环节的斐波那契数列
这样子,我们的过程就变成了
找到当前行末尾的位置,对应的乘一下,得到下一行的倍数
如果下一行的开头这个数字已经被得到过,那么出现了全局的循环节,
直接暴力算就可以了。
如果发现此时逆元不存在,证明没有循环,直接矩阵快速幂即可。
否则的话继续矩阵快速幂找下一行即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1001000
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll MOD;
void add(ll &x,ll y){x+=y;if(x>=MOD)x-=MOD;}
struct Matrix
{
ll s[4][4];
ll* operator[](int x){return s[x];}
void clear(){memset(s,0,sizeof(s));}
void init(){clear();s[1][1]=s[2][2]=s[3][3]=1;}
}nt,lt,ans,ret[MAX];
Matrix operator*(Matrix a,Matrix b)
{
Matrix ret;ret.clear();
for(int i=1;i<=3;++i)
for(int j=1;j<=3;++j)
for(int k=1;k<=3;++k)
add(ret[i][j],1ll*a[i][k]*b[k][j]%MOD);
return ret;
}
Matrix fpow(Matrix a,ll b)
{
Matrix s;s.init();
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1;y=0;return;}
exgcd(b,a%b,x,y);
ll tmp=y;
y=x-(a/b)*y;x=tmp;
}
ll f[MAX<<3],n,K,vis[MAX],inv[MAX],len[MAX];
bool book[MAX];
int main()
{
n=read();K=read();MOD=read();
f[1]=f[2]=1;bool fl=false;
for(int i=3;;++i)
{
f[i]=(f[i-1]+f[i-2])%K;
if(!vis[f[i]])vis[f[i]]=i;
if(f[i]==1&&f[i-1]==1)break;
}
nt[1][2]=nt[2][1]=nt[2][2]=nt[3][3]=1;
lt.init();lt[3][2]=-1;
ans[1][1]=ans[1][3]=1;
for(ll t=1;n;)
{
if(!inv[t])
{
if(__gcd(t,K)!=1)inv[t]=-1;
else
{
ll x,y;exgcd(t,K,x,y);
inv[t]=(x+K)%K;
}
}
if(inv[t]==-1){ans=ans*fpow(nt,n);break;}
if(!book[t]||fl)
{
book[t]=true;
if(!vis[inv[t]]){ans=ans*fpow(nt,n);break;}
len[t]=vis[inv[t]];
if(n>=len[t])
{
n-=len[t];
ret[t]=fpow(nt,len[t])*lt;
ans=ans*ret[t];
t=t*f[len[t]-1]%K;
}
else{ans=ans*fpow(nt,n);break;}
}
else
{
Matrix now;ll cnt=0;now.init();
for(ll i=t*f[len[t]-1]%K;i!=t;i=i*f[len[i]-1]%K)
now=now*ret[i],cnt+=len[i];
now=ret[t]*now;cnt+=len[t];
ans=ans*fpow(now,n/cnt);
n%=cnt;fl=true;
}
}
printf("%lld\n",(ans[1][2]%MOD+MOD)%MOD);
return 0;
}
【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)的更多相关文章
- [BZOJ2432][Noi2011]兔农 矩阵乘法+exgcd
2432: [Noi2011]兔农 Time Limit: 10 Sec Memory Limit: 256 MB Description 农夫栋栋近年收入不景气,正在他发愁如何能多赚点钱时,他听到 ...
- HDU 2256 Problem of Precision 数论矩阵快速幂
题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5 ...
- BZOJ2432 [Noi2011]兔农
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 数论+矩阵快速幂|斐波那契|2014年蓝桥杯A组9-fishers
标题:斐波那契 斐波那契数列大家都非常熟悉.它的定义是: f(x) = 1 .... (x=1,2) f(x) = f(x-1) + f(x-2) .... (x>2) 对于给定的整数 n 和 ...
- 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...
- cf 450b 矩阵快速幂(数论取模 一大坑点啊)
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...
- HDU6395 Sequence(矩阵快速幂+数论分块)
题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...
- 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂
Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...
- 【数论】 快速幂&&矩阵快速幂
首先复习快速幂 #include<bits/stdc++.h> using namespace std; long long power(long long a,long long b,l ...
随机推荐
- Python中的装饰器的使用及固定模式
装饰器的使用: 在不想修改函数的调用方式,但是想给函数添加内容的功能的时候使用 为什么使用装饰器: 软件实体应该是可扩展,而不可修改的.也就是说,对扩展是开放的,而对修改是封闭的. 因此,引出 ...
- TensorFlow(实战深度学习框架)----深层神经网络(第四章)
深层神经网络可以解决部分浅层神经网络解决不了的问题. 神经网络的优化目标-----损失函数 深度学习:一类通过多层非线性变化对高复杂性数据建模算法的合集.(两个重要的特性:多层和非线性) 线性模型的最 ...
- JS对字符串编码的几种方式
函数 描述 encodeURI() 把字符串编码为 URI encodeURIComponent() 把字符串编码为 URI 组件 escape() 对字符串进行编码 上面是查询来自w3school的 ...
- [T-ARA][HUE]
歌词来源:http://music.163.com/#/song?id=22704406 wa du seu mo geum to yo do ga tae 어딜가도 스페셜한게 없어 [eo-dil ...
- 搭建Git工作环境
为什么要做版本控制? 在平时的工作中,经常会遇到写文档的事情,而写文档基本都不会一蹴而就,总是会修修改改很多次,而版本控制能够记录每次修改的版本,能够进行回溯.有很多版本控制工具,但是作为一个程序员, ...
- SQL行列轉換方法(詳細例子)
普通行列转换(version 1.0)仅针对sql server 2000提供静态和动态写法,version 2.0增加sql server 2005的有关写法. 问题:假设有张学生成绩表(tb)如下 ...
- ie6下,莫名被复制出一段文字解决
在IE6下使用浮动可能会出现文字重复的情况. 在IE6下,浮动层之间有注释文字的话,之前那个浮动层的内容文字就有可能遭遇一个“隐形”的复制,但是代码里查看文字可并没有多出来. 看个例子: HTML & ...
- Split the Number(思维)
You are given an integer x. Your task is to split the number x into exactly n strictly positive inte ...
- 团队Alpha冲刺(三)
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:丹丹 组员7:家伟 组员8:政演 组员9:鸿杰 组员10:刘一好 组员11:何宇恒 展示组内最 ...
- web表格代码(5)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...