题目链接

BZOJ4735

题解

给定一个序列,有的位置为\(w_i - 1\),有的位置为\(-1\),问有多少种排列,使得任意前缀和非负?

我们末尾加上一个\(-1\),就是要保证除了末尾外的前缀和非负

我们考虑把所有元素进行圆排列,对于一个圆排列,无论从哪个位置断开,最小值的位置是固定的

最小值显然必须是末尾,而这个位置的\(-1\)有\(m - n + 1\)种情况,其中只有一种\(-1\)是末尾的\(-1\)

所以答案就是

\[\frac{m!}{m - n + 1}
\]

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000,P = 998244353;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int main(){
int n = read(),m = 0,ans = 1;
REP(i,n) m += read();
for (int i = m; i; i--)
if (i != m + 1 - n) ans = 1ll * ans * i % P;
printf("%d\n",ans);
return 0;
}

BZOJ4735 你的生命已如风中残烛 【数学】的更多相关文章

  1. BZOJ4735:你的生命已如风中残烛(组合数学)

    Description 众所周知,萌萌哒六花不擅长数学,所以勇太给了她一些数学问题做练习.但是今天六花酱不想做数学题,于是他们开始打牌. 现在他们手上有m张不同的牌,牌有两种:普通牌和功能牌.功能牌一 ...

  2. BZOJ4735 你的生命已如风中残烛(组合数学)

    将每个位置上的数都-1,则显然相当于前缀和始终非负. 然后就是完全想不到的了.考虑往里面加一张-1的牌.假设在一个合法排列的最后添上一个-1,那么在该排列的所有循环同构排列中,满足前m个前缀和都非负的 ...

  3. [LOJ#2329]「清华集训 2017」我的生命已如风中残烛

    [LOJ#2329]「清华集训 2017」我的生命已如风中残烛 试题描述 九条可怜是一个贪玩的女孩子. 这天她在一堵墙钉了 \(n\) 个钉子,第 \(i\) 个钉子的坐标是 \((x_i,y_i)\ ...

  4. UOJ273 [清华集训2016] 你的生命已如风中残烛 【数学】

    题目分析: 把$0$卡牌看成$-1$.题目要求前缀和始终大于等于$1$. 最后添加一个$-1$,这样除了最后一位之外大于等于1,最后一位等于0. 构造圆排列.这样的话一个圆排列只有一个满足的情况,然后 ...

  5. P6672-[清华集训2016]你的生命已如风中残烛【结论】

    正题 题目链接:https://www.luogu.com.cn/problem/P6672 题目大意 长度为\(m\)的序列\(a\),有\(n\)个数字不是\(0\),其他\(m-n\)个是\(0 ...

  6. 【UOJ】#273. 【清华集训2016】你的生命已如风中残烛

    题目链接:http://uoj.ac/problem/273 $${Ans=\frac{\prod _{i=1}^{m}i}{w-n+1}}$$ #include<iostream> #i ...

  7. 2018.10.30 uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)

    传送门 组合数学妙题. 我们把这mmm个数都减去111. 然后出牌的地方就变成了−1-1−1. 然后发现求出每个位置的前缀和之后全部都是非负数. 考虑在最后加入一个−1-1−1构成一个m+1m+1m+ ...

  8. uoj#344. 【清华集训2017】我的生命已如风中残烛(计算几何)

    题面 传送门 题解 orzxyx 首先我们发现,一个点如果被到达大于一次,那么这个点肯定在一个环上.所以在不考虑环的情况下每个点只会被到达一次,那么我们就可以直接暴力了 简单来说,我们对每个点\(i\ ...

  9. uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)

    传送门 一道打表题 我们把那些普通牌的位置看成\(-1\),那么就是要求有多少个排列满足前缀和大于等于\(1\) 考虑在最后放一个\(-1\),那么就是除了\(m+1\)的位置前缀和都要大于等于\(1 ...

随机推荐

  1. Maven学习(一)-----Maven安装配置总结

    想要安装 Apache Maven 在Windows 系统上, 需要下载 Maven 的 zip 文件,并将其解压到你想安装的目录,并配置 Windows 环境变量. 所需工具 : JDK 1.8 M ...

  2. 「Leetcode」976. Largest Perimeter Triangle(C++)

    分析 好久不刷题真的思维僵化,要考虑到这样一个结论:如果递增的三个数\(x_i,x_{i+1},x_{i+2}\)不符合题意,那么最大的两边之差一定大于等于第一条边,那么任何比第一条边小的都不能成立. ...

  3. linux 下 python 安装 Django

    安装 setuptools 使用easy_install命令 easy_install django

  4. 在进行分布式框架搭建的过程中,出现问题advised by org.springframework.transaction.interceptor.TransactionInterceptor.invoke(org.aopalliance.intercept.MethodInvocation)?

    今天在进行宜立方商城,进行文件配置的时间,遇到如下的问题,问题是:advised by org.springframework.transaction.interceptor.TransactionI ...

  5. html js div随鼠标移动

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. Scrum立会报告+燃尽图(Beta阶段第四次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2386 项目地址:https://coding.net/u/wuyy694 ...

  7. Beta阶段第三次网络会议

    Beta阶段第三次网络会议 第二次会议问题解决情况 不同等级城堡不同图片,移动动画解决,阴影效果添加 小地图信息添加城堡和士兵信息 新AI设计失败,在存在科技树的情况下,如果将所有可能操作全部纳入考虑 ...

  8. ASP.NET MVC5 学习系列之视图

    一.视图约定 当创建一个项目模版时,可以注意到,项目以一种非常具体的方式包含了一个结构化的Views目录.在每一个控制器的View文件夹中,每一个操作方法都有一个同名的视图文件与其对应.(约定大于配置 ...

  9. ERROR----java.lang.NoClassDefFoundError: org/apache/commons/lang3/StringUtils

    2013-4-28 13:17:57 org.apache.catalina.core.StandardContext filterStart 严重: Exception starting filte ...

  10. Hibernate(六)

    三套查询之HQL查询 hql语句(面向):类   对象   属性 package com.rong.entity.hql; public class User { public User(int id ...