操作系统: MAC OS X

一、准备

1、 JDK 1.8

  下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

2、Hadoop CDH

  下载地址:https://archive.cloudera.com/cdh5/cdh/5/

  本次安装版本:hadoop-2.6.0-cdh5.9.2.tar.gz

二、配置SSH(免密码登录)

1、打开iTerm2 终端,输入:ssh-keygen -t rsa   ,回车,next  -- 生成秘钥
2、cat id_rsa_xxx.pub >> authorized_keys         -- 用于授权你的公钥到本地可以无密码登录
3、chmod 600 authorized_keys      -- 赋权限
4、ssh localhost                              -- 免密码登录,如果显示最后一次登录时间,则登录成功

三、配置Hadoop&环境变量

1、创建hadoop目录&解压

  mkdir -p work/install/hadoop-cdh5.9.2 -- hadoop 主目录
  mkdir -p work/install/hadoop-cdh5.9.2/current/tmp work/install/hadoop-cdh5.9.2/current/nmnode work/install/hadoop-cdh5.9.2/current/dtnode -- hadoop 临时、名称节点、数据节点目录

  tar -xvf hadoop-2.6.0-cdh5.9.2.tar.gz    -- 解压包

2、配置 .bash_profile 环境变量
 HADOOP_HOME="/Users/kimbo/work/install/hadoop-cdh5.9.2/hadoop-2.6.0-cdh5.9.2"

 JAVA_HOME="/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home"
HADOOP_HOME="/Users/kimbo/work/install/hadoop-cdh5.9.2/hadoop-2.6.0-cdh5.9.2" PATH="/usr/local/bin:~/cmd:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH"
CLASSPATH=".:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar" export JAVA_HOME PATH CLASSPATH HADOOP_HOME

  source .bash_profile   -- 生效环境变量

3、修改配置文件(重点)

  cd $HADOOP_HOME/etc/hadoop

  • core-site.xml
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/Users/zhangshaosheng/work/install/hadoop-cdh5.9.2/current/tmp</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:8020</value>
</property>
<property>
<name>fs.trash.interval</name>
<value>4320</value>
<description> 3 days = 60min*24h*3day </description>
</property>
</configuration>
  • hdfs-site.xml
 <configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>/Users/zhangshaosheng/work/install/hadoop-cdh5.9.2/current/nmnode</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/Users/zhangshaosheng/work/install/hadoop-cdh5.9.2/current/dtnode</value>
</property>
<property>
<name>dfs.datanode.http.address</name>
<value>localhost:50075</value>
</property>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property>
</configuration>
  • yarn-site.xml
 <configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
<description>Whether to enable log aggregation</description>
</property>
<property>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/Users/zhangshaosheng/work/install/hadoop-cdh5.9.2/current/tmp/yarn-logs</value>
<description>Where to aggregate logs to.</description>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>8192</value>
<description>Amount of physical memory, in MB, that can be allocated
for containers.</description>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>2</value>
<description>Number of CPU cores that can be allocated
for containers.</description>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
<description>The minimum allocation for every container request at the RM,
in MBs. Memory requests lower than this won't take effect,
and the specified value will get allocated at minimum.</description>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
<description>The maximum allocation for every container request at the RM,
in MBs. Memory requests higher than this won't take effect,
and will get capped to this value.</description>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-vcores</name>
<value>1</value>
<description>The minimum allocation for every container request at the RM,
in terms of virtual CPU cores. Requests lower than this won't take effect,
and the specified value will get allocated the minimum.</description>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>2</value>
<description>The maximum allocation for every container request at the RM,
in terms of virtual CPU cores. Requests higher than this won't take effect,
and will get capped to this value.</description>
</property>
</configuration>
  • mapred-site.xml
  <property>
<name>mapreduce.jobtracker.address</name>
<value>localhost:8021</value>
</property>
<property>
<name>mapreduce.jobhistory.done-dir</name>
<value>/Users/zhangshaosheng/work/install/hadoop-cdh5.9.2/current/tmp/job-history/</value>
<description></description>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
<description>The runtime framework for executing MapReduce jobs.
Can be one of local, classic or yarn.
</description>
</property> <property>
<name>mapreduce.map.cpu.vcores</name>
<value>1</value>
<description>
The number of virtual cores required for each map task.
</description>
</property>
<property>
<name>mapreduce.reduce.cpu.vcores</name>
<value>1</value>
<description>
The number of virtual cores required for each reduce task.
</description>
</property> <property>
<name>mapreduce.map.memory.mb</name>
<value>1024</value>
<description>Larger resource limit for maps.</description>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>1024</value>
<description>Larger resource limit for reduces.</description>
</property>
<configuration>
<property>
<name>mapreduce.map.java.opts</name>
<value>-Xmx768m</value>
<description>Heap-size for child jvms of maps.</description>
</property>
<property>
<name>mapreduce.reduce.java.opts</name>
<value>-Xmx768m</value>
<description>Heap-size for child jvms of reduces.</description>
</property> <property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>1024</value>
<description>The amount of memory the MR AppMaster needs.</description>
</property>
</configuration>
  • hadoop-env.sh

export JAVA_HOME=${JAVA_HOME}    -- 添加 java环境变量

四、启动

  1、格式化

    hdfs namenode -format

  如果hdfs命令识别不了, 检查环境变量,是否配置正确了。

  2、启动

    cd $HADOOP_HOME/sbin

    执行命名:start-all.sh  ,按照提示,输入密码

五、验证

  1、在终端输入: jps 

    出现如下截图,说明ok了

  2、登录web页面

    a)HDFS :  http://localhost:50070/dfshealth.html#tab-overview

      

    b)YARN Cluster:  http://localhost:8088/cluster

      

    c)YARN ResourceManager/NodeManager: http://localhost:8042/node

    

Mac Hadoop2.6(CDH5.9.2)伪分布式集群安装的更多相关文章

  1. (转)ZooKeeper伪分布式集群安装及使用

    转自:http://blog.fens.me/hadoop-zookeeper-intro/ 前言 ZooKeeper是Hadoop家族的一款高性能的分布式协作的产品.在单机中,系统协作大都是进程级的 ...

  2. ZooKeeper伪分布式集群安装及使用

    ZooKeeper伪分布式集群安装及使用 让Hadoop跑在云端系列文章,介绍了如何整合虚拟化和Hadoop,让Hadoop集群跑在VPS虚拟主机上,通过云向用户提供存储和计算的服务. 现在硬件越来越 ...

  3. Hadoop学习---CentOS中hadoop伪分布式集群安装

    注意:此次搭建是在ssh无密码配置.jdk环境已经配置好的情况下进行的 可以参考: Hadoop完全分布式安装教程 CentOS环境下搭建hadoop伪分布式集群 1.更改主机名 执行命令:vi  / ...

  4. Linux单机环境下HDFS伪分布式集群安装操作步骤v1.0

    公司平台的分布式文件系统基于Hadoop HDFS技术构建,为开发人员学习及后续项目中Hadoop HDFS相关操作提供技术参考特编写此文档.本文档描述了Linux单机环境下Hadoop HDFS伪分 ...

  5. kafka2.9.2的伪分布式集群安装和demo(java api)测试

    目录: 一.什么是kafka? 二.kafka的官方网站在哪里? 三.在哪里下载?需要哪些组件的支持? 四.如何安装? 五.FAQ 六.扩展阅读   一.什么是kafka? kafka是LinkedI ...

  6. ubuntu12.04+kafka2.9.2+zookeeper3.4.5的伪分布式集群安装和demo(java api)测试

    博文作者:迦壹 博客地址:http://idoall.org/home.php?mod=space&uid=1&do=blog&id=547 转载声明:可以转载, 但必须以超链 ...

  7. 大数据学习之hadoop伪分布式集群安装(一)公众号undefined110

    hadoop的基本概念: Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoo ...

  8. zookeeper伪分布式集群安装

    1.安装3个zookeeper 1.1创建集群安装的目录 1.2配置一个完整的服务 这里不做详细说明,参考我之前写的 zookeeper单节点安装 进行配置即可,此处直接复制之前单节点到集群目录 创建 ...

  9. kafka系列一:单节点伪分布式集群搭建

    Kafka集群搭建分为单节点的伪分布式集群和多节点的分布式集群两种,首先来看一下单节点伪分布式集群安装.单节点伪分布式集群是指集群由一台ZooKeeper服务器和一台Kafka broker服务器组成 ...

随机推荐

  1. Allocation Sinking Optimization

    LuaJIT Sponsorship Program http://luajit.org/sponsors.html Sponsorship for allocation/store sinking ...

  2. Django自带的加密算法及加密模块

    Django 内置的User类提供了用户密码的存储.验证.修改等功能,可以很方便你的给用户提供密码服务. 默认的Ddjango使用pbkdf2_sha256方式来存储和管理用的密码,当然是可以自定义的 ...

  3. matplotlib-折线图、散点图

    (一)折线图小结 1.设置图片大小(想要一个高清无码大图) # 图大小 plt.figure(figsize=(20, 8), dpi=80) 2.保存到本地 # 设置图片大小 plt.figure( ...

  4. 【生产问题】write log 引起系统卡死,业务全部阻塞

    解决办法:https://www.sqlskills.com/help/waits/writelog/ [生产问题]write log 引起系统卡死,业务全部阻塞 writelog不成功不作数的,所以 ...

  5. 前端页面汉子显示为问号,需修改 linux下面修改mysql 数据库的字符编码为utf8

    设置MySQL数据库编码为UTF-8 登陆后查看数据库当前编码:SHOW VARIABLES LIKE 'char%'; 修改/etc/mysql/my.cnf (默认安装路径下) (标签下没有的添加 ...

  6. R语言apply()函数用法

    在R语言的帮助文档里,apply函数的功能是: Retruns a vector or array or list of values obtained by applying a function ...

  7. OpenCV Windows7 VC6.0安装以及HelloWorld

    anna在实验室配置OpenCV的时候,按照中文网站的介绍,很顺利的就完成了.可是回到家情况就大不一样!!总是在链接的时候报错,不是少这个lib就是少那个lib大哭最后查明是anna马虎,忘了将C:\ ...

  8. Linux系统——Inotify事件监控工具

    每秒传输文件200个 Rsync放在定时任务中也只是一分钟执行一回,要想达到实时的效果,为防止单点nfs架构故障,再启动一台nfs服务器作为主nfs服务器的备份服务器,此时需要inotify实时同步数 ...

  9. (16)Cocos2d-x 多分辨率适配完全解析

    Overview 从Cocos2d-x 2.0.4开始,Cocos2d-x提出了自己的多分辨率支持方案,废弃了之前的retina相关设置接口,提出了design resolution概念. 3.0中有 ...

  10. 生成对抗网络(Generative Adversarial Network)阅读笔记

    笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...