Beta Distribution
首先思考一个问题:
熟悉棒球运动的都知道有一个指标就是棒球击球率(batting average),就是用一个运动员击中的球数除以击球的总数,我们一般认为0.266是正常水平的击球率,正常范围在0.215到0.36,而如果击球率高达0.3就被认为是非常优秀的。
现在有一个棒球运动员,我们希望能够预测他在这一赛季中的棒球击球率是多少。你可能就会直接计算棒球击球率,用击中的数除以击球数,但是如果这个棒球运动员只打了一次,而且还命中了,那么他就击球率就是100%了,这显然是不合理的,因为根据棒球的历史信息,我们知道这个击球率应该是0.215到0.36之间才对啊。
在这种具有先验知识的情况下,一种考虑可能是贝叶斯,但是击球命中与否是对立事件,贝叶斯用于描述两个事件之间的因果关系。这种已有先验知识,再去更新统计数据的情况,Beta Distribution可能是最佳选择了。
B分布的理解和使用不需要考虑其数学定义,B分布定义在(0, 1),用B(x; α, β) 表示,其中x是自变量,α, β是hyperparameter,给出α, β就可以确定其形状。

B分布有一些很实用的性质:其众数、期望、方差、偏差、峰度等分布特征都由α, β确定;当初始参数α, β确定以后,可以在先验的基础上开始统计,并更新概率分布。回到最开始的问题。
对于这个问题,我们可以用一个二项分布表示(一系列成功或失败),一个最好的方法来表示这些经验(在统计中称为先验信息)就是用beta分布,这表示在我们没有看到这个运动员打球之前,我们就有了一个大概的范围。beta分布的定义域是(0,1)这就跟概率的范围是一样的。
接下来我们将这些先验信息转换为beta分布的参数,我们知道一个击球率应该是平均0.27左右,而他的范围是0.21到0.35,那么根据这个信息,我们可以取α=81,β=219。

之所以取这两个参数是因为:
- beta分布的均值是
- 从图中可以看到这个分布主要落在了(0.2,0.35)间,这是从经验中得出的合理的范围。
在这个例子里,我们的x轴就表示各个击球率的取值,x对应的y值就是这个击球率所对应的概率。也就是说beta分布可以看作一个概率的概率分布。
那么有了先验信息后,现在我们考虑一个运动员只打一次球,那么他现在的数据就是”1中;1击”。这时候我们就可以更新我们的分布了,让这个曲线做一些移动去适应我们的新信息。beta分布在数学上就给我们提供了这一性质,他与二项分布是共轭先验的(Conjugate_prior)。所谓共轭先验就是先验分布是beta分布,而后验分布同样是beta分布。结果很简单:
这个新的B分布的数学期望,可以认为是该运动员最新的命中率。
Beta Distribution的更多相关文章
- Notes on the Dirichlet Distribution and Dirichlet Process
Notes on the Dirichlet Distribution and Dirichlet Process In [3]: %matplotlib inline Note: I wrote ...
- [Bayes] Multinomials and Dirichlet distribution
From: https://www.cs.cmu.edu/~scohen/psnlp-lecture6.pdf 不错的PPT,图示很好. 伯努利分布 和 多项式分布 Binomial Distribu ...
- Beta分布(转)
背景 在Machine Learning中,有一个很常见的概率分布叫做Beta Distribution: 同时,你可能也见过Dirichelet Distribution: 那么Beta Distr ...
- LDA学习之beta分布和Dirichlet分布
---恢复内容开始--- 今天学习LDA主题模型,看到Beta分布和Dirichlet分布一脸的茫然,这俩玩意怎么来的,再网上查阅了很多资料,当做读书笔记记下来: 先来几个名词: 共轭先验: 在贝叶斯 ...
- Beta分布从入门到精通
近期一直有点小忙,可是不知道在瞎忙什么,最终有时间把Beta分布的整理弄完. 以下的内容.夹杂着英文和中文,呵呵- Beta Distribution Beta Distribution Defini ...
- Statistics : Data Distribution
1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...
- 【概率论】5-8:Beta分布(The Beta Distributions)
title: [概率论]5-8:Beta分布(The Beta Distributions) categories: - Mathematic - Probability keywords: - Th ...
- 转载: beta分布介绍
最近在看机器学习方面的资料,作为入门的李航教授所写的<统计机器学习>一书,刚看完第一章我也是基本处于懵了的状态,其中有一道题提到贝叶斯估计,看了下网上的资料都提到了一个叫做 beta分布的 ...
- 指数家族-Beta分布
2. Beta分布 2.1 Beta分布 我们将由几个问题来得引出几个分布: 问题一:1: 2:把这个 个随机变量排序后得到顺序统计量 3:问 是什么分布 首先我们尝试计算 落在一个区间 ...
随机推荐
- 【SSH网上商城项目实战13】Struts2实现文件上传功能
转自:https://blog.csdn.net/eson_15/article/details/51366384 上一节我们做完了添加和更新商品的功能,这两个部分里有涉及到商品图片的上传,并没有详细 ...
- xshell ssh连接linux时提示ssh服务器拒绝了密码
用Xshell root连接时显示ssh服务器拒绝了密码,应该是应该是sshd的设置不允许root用户用密码远程登录 修改 /etc/ssh/sshd_config文件,注意,安装了openssh才会 ...
- 第二天-while循环 格式化输出 运算符 编码
一.while循环 while 条件: 语句块(循环体) #判断条件是否成立,若成立执行循环体,然后再次判断条件...直到不满足跳出循环 else: 当条件不成立的时候执行这里,和break没 ...
- UOJ#54 BZOJ3434 [WC2014]时空穿梭
题目描述 小 X 驾驶着他的飞船准备穿梭过一个 \(n\) 维空间,这个空间里每个点的坐标可以用 \(n\) 个实数表示,即 \((x_1,x_2,\dots,x_n)\). 为了穿过这个空间,小 X ...
- 实现键盘记录的e.Whick和keyCode,兼容FireFox和IE
主要分四个部分第一部分:浏览器的按键事件第二部分:兼容浏览器第三部分:代码实现和优化第四部分:总结 第一部分:浏览器的按键事件 用js实现键盘记录,要关注浏览器的三种按键事件类型,即keydown,k ...
- MPU/SoC/Application Processor/Embedded OS
Everything has its principles and mechanisms which are designed by its creator and followed by its u ...
- (C#) 多线程访问int, bool 等值类型变量
参考: https://stackoverflow.com/questions/154551/volatile-vs-interlocked-vs-lock/154803
- 移动端H5开发 之 渲染引擎
渲染引擎 浏览器渲染引擎,负责解析 HTML, CSS,javascript的DOM部分,如桌面浏览器一般手机端也有4个比较重要的渲染引擎 Gecko,Trident,WebKit,Blink . 黑 ...
- Spring MVC基本配置和实践(一)
一.Spring MVC介绍 1. Spring MVC是什么? The Spring Web MVC framework和Struts2都属于表现层的框架,它是Spring框架的一部分,我们可以从S ...
- “小小科技女神”与微软DigiGirlz Day的约会
上周五在微软中国上海科技园举行的微软科技女生夏令营终于在一天“忙碌的轻松中”,伴随着师生和工程师们的欢笑结束了. 本次的微软科技女生夏令营一共有来自上海闵行区七宝中学.莘庄中学和闵行中学的共50名高中 ...