12.18 update:补充了 $ F $ 题的题解

A 题:

题目保证一定有解,就可以考虑用 $ 2 $ 和 $ 3 $ 来凑出这个数 $ n $

如果 $ n $ 是偶数,我们用 $ n / 2 $ 个 $ 2 $ 来凑出 $ n $ 即可

如果 $ n $ 是奇数,就用 $ n / 2 - 1 $ 个 $ 2 $ 和 $ 1 $ 个 $ 3 $ 凑出 $ n $ 即可

所以只需输出 $ n / 2 $

B 题:

如果一个字符串重排后一定是回文串,说明这个字符串只有 $ 1 $ 种字符

如果有两种不同字符,就可以把一个放在开头,一个放在结尾,这样形成的一定不是回文串

一个简单一点的写法是 $ sort $ 一下这个字符串,判断回文

C 题:

贪心的想,我们如果要使整个序列非降,那么前面的数字要尽量小,后面的数字要尽量大

首先 $ a[1] = 0,a[n] = b[1] $,然后贪心的扫过去,在满足条件的情况下使得前面的数字尽量小,后面的数字尽量大即可

D 题:

发现每条边的两个端点的数字的奇偶性一定不同

所以我们我们只要做一次 $ bfs $ 染色并判断是否能完成染色即可

假设黑点有 $ a $ 个,白点有 $ b $ 个

如果黑点是奇数,方案数是 $ 2^a $ 种,如果白点是奇数,方案数是 $ 2^b $ 种,总方案数是 $ 2^a + 2^b $ 种

然后发现整个图不一定联通

所以我们对每个联通块做一次 $ bfs $ 染色,然后把答案相乘即可

注意不能用 memset,不然 $ T $ 组数据每次 memset 一次肯定凉

E 题:

用 $ pa[i] $ 表示 $ i $ 这个数在第一个排列中出现的位置,$ pb[i] $ 表示 $ i $ 这个数在第二个排列中出现的位置

假设查询区间为 $ l1,r1,l2,r2 $

如果 $ i $ 这个点对答案造成了贡献,那么 $ l1 \le pa[i] \le r1 $ && $ l2 \le pb[i] \le r2 $

容易发现问题变成了二维数点问题,$ cdq $ 分治离线统计答案即可

F 题:

咕咕咕

补锅完毕

发现 $ len $ 的大小非常大,不能放进状态里,又发现 $ k \le 100 $,所以用 $ f[i][j] $ 表示第 $ i $ 个数是 $ j $ 且满足题目所述条件的方案数

发现不能很好的进行转移,所以再用 $ s[i] $ 表示 $ \sum_{j = 1}^{k} f[i][j] $,然后就是容斥转移一下

注意一下需要容斥的条件

可以根据代码理解一下

#include <bits/stdc++.h>
#define CIOS ios::sync_with_stdio(false);
#define rep(i, a, b) for(register int i = a; i <= b; i++)
#define per(i, a, b) for(register int i = a; i >= b; i--)
#define DEBUG(x) cerr << "DEBUG" << x << " >>> ";
using namespace std; typedef unsigned long long ull;
typedef long long ll; template <typename T>
inline void read(T &f) {
f = 0; T fu = 1; char c = getchar();
while (c < '0' || c > '9') { if (c == '-') fu = -1; c = getchar(); }
while (c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
f *= fu;
} template <typename T>
void print(T x) {
if (x < 0) putchar('-'), x = -x;
if (x < 10) putchar(x + 48);
else print(x / 10), putchar(x % 10 + 48);
} template <typename T>
void print(T x, char t) {
print(x); putchar(t);
} const int N = 1e5 + 5, md = 998244353; inline int add(int x, int y) {
x += y;
if(x >= md) x -= md;
return x;
} inline int sub(int x, int y) {
x -= y;
if(x < 0) x += md;
return x;
} int f[N][105], cnt[N][105], s[N], a[N];
int n, k, len; int main() {
read(n); read(k); read(len); if(len == 1) { cout << 0 << endl; return 0; }
for(register int i = 1; i <= n; i++) read(a[i]);
for(register int i = 1; i <= n; i++) {
for(register int j = 1; j <= k; j++) cnt[i][j] = cnt[i - 1][j] + (a[i] == -1 || a[i] == j);
}
s[0] = 1; if(a[1] == -1) { for(register int i = 1; i <= k; i++) f[1][i] = 1; s[1] = k; } else f[1][a[1]] = 1, s[1] = 1;
for(register int i = 2; i <= n; i++) {
for(register int j = 1; j <= k; j++) {
if(~a[i] && a[i] != j) continue;
f[i][j] = s[i - 1];
if(i >= len) {
int l = i - len;
if(cnt[i][j] - cnt[l][j] == len) {
f[i][j] = sub(f[i][j], sub(s[l], f[l][j]));
}
}
s[i] = add(s[i], f[i][j]);
}
}
cout << s[n] << endl;
return 0;
}

G 题:

习惯性的把曼哈顿距离的绝对值拆出来,用二进制表示

$ 31 $ 的二进制表示是 $ 11111 $,表示 $ 5 $ 维的一个点的坐标加入的正负情况都为正(即 $ x[1] - y[1] + x[2] - y[2] + x[3] - y[3] + x[4] - y[4] + x[5] - y[5] $

$ 29 $ 的二进制表示是 $ 11101 $,表示 $ x[1] - y[1] + x[2] - y[2] + x[3] - y[3] - x[4] + y[4] + x[5] - y[5] $ (注意 $ x[4] $ 和 $ y[4] $ 的符号变化

那么我们要求的就是 max{f[0] + f[31], f[1] + f[30], f[2] + f[29]...}

用线段树维护即可

codeforces 1093 题解的更多相关文章

  1. Codeforces 1093 简要题解

    文章目录 A题 B题 C题 D题 E题 F题 G题 传送门 GGG题手速慢了没有在比赛的时候码出来233,FFF题居然没想出来? 五道题滚粗. 先谈谈其他几道题. A题 传送门 不小心看错题 直接看奇 ...

  2. codeforces#536题解

    CodeForces#536 A. Lunar New Year and Cross Counting Description: Lunar New Year is approaching, and ...

  3. Codeforces Numbers 题解

    这题只需要会10转P进制就行了. PS:答案需要约分,可以直接用c++自带函数__gcd(x,y). 洛谷网址 Codeforces网址 Code(C++): #include<bits/std ...

  4. Codeforces 691E题解 DP+矩阵快速幂

    题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...

  5. Codeforces 833B 题解(DP+线段树)

    题面 传送门:http://codeforces.com/problemset/problem/833/B B. The Bakery time limit per test2.5 seconds m ...

  6. Codeforces 840C 题解(DP+组合数学)

    题面 传送门:http://codeforces.com/problemset/problem/840/C C. On the Bench time limit per test2 seconds m ...

  7. Codeforces 515C 题解(贪心+数论)(思维题)

    题面 传送门:http://codeforces.com/problemset/problem/515/C Drazil is playing a math game with Varda. Let’ ...

  8. Codeforces 475D 题解(二分查找+ST表)

    题面: 传送门:http://codeforces.com/problemset/problem/475/D Given a sequence of integers a1, -, an and q ...

  9. CodeForces CF875C题解

    题解 非常有意思的\(2-SAT\)的题. 听学长讲完之后感觉确实容易想到\(2-SAT\),顺理成章. 显然,对于两个串,对咱们来说有意义的显然是两个串中第一个不同的数字.那么,我们假设两个串分别是 ...

随机推荐

  1. C#中使用DLL相关问题

    一,C#调用 C/C++ 库函数 1,UNITY的C# VS工程常常打不开 属性页,右键工程无 [添加引用]项.原因是VS的自带工具[适用于UNITY的工具]导致的. 解决办法:VS-[工具]-[选项 ...

  2. OpenLayers 3 扩展插件收集

    OpenLayers 3 扩展插件 Awesome-OpenLayers OL3扩展 ol3-ext 很酷的一组 OpenLayers 3 (ol3) 扩展: 编辑-选择控件.CSS popup(弹出 ...

  3. 迷你MVVM框架 avalonjs 1.3发布

    性能得到大幅改良的avalon1.3发布了. 修复$outer BUG 修复IE6-8下扫描加载Flash资源的OBJECT标签时,遇到它既没有innerHTML也没有getAttributeNode ...

  4. MaskBlt 拷贝非矩形区域图象

    MaskBlt  该函数使用特定的掩码和光栅操作来对源和目标位图的颜色数据进行组合. 原型: BOOL MaskBlt( HDC  hdcDest, int  nXDest,  int  nYDest ...

  5. google-gson库下的gson的基本使用

    public class Users { private String username; private String password; private Integer age; public S ...

  6. $or操作符

    [$or操作符] The $or operator performs a logical OR operation on an array of two or more <expressions ...

  7. 286被围绕的区域 · Surrounded Regions

    [抄题]: 给一个二维的矩阵,包含 'X' 和 'O', 找到所有被 'X' 围绕的区域,并用 'X' 填充满. 样例 给出二维矩阵: X X X X X O O X X X O X X O X X ...

  8. js中with 用法

    with 语句用于设置代码在特定对象中的作用域. 它的语法: with (expression) statement例如: var sMessage = "hello"; with ...

  9. yum 系列(一) yum 和 rpm 常用命令

    yum 系列(一) yum 和 rpm 常用命令 一.yum 常用命令 yum 命令:http://man.linuxde.net/yum yum 是在 Fedora 和 RedHat 以及 SUSE ...

  10. Android使用ListView使用方法

    Android使用ListView应该注意的地方   在ListView中设置Selector为null会报空指针? mListView.setSelector(null);//空指针 试试下面这种: ...