P2766 最长不下降子序列问题
题目描述
«问题描述:
给定正整数序列x1,...,xn 。
(1)计算其最长不下降子序列的长度s。
(2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列。
(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的不下降子序列。
«编程任务:
设计有效算法完成(1)(2)(3)提出的计算任务。
输入输出格式
输入格式:
第1 行有1个正整数n,表示给定序列的长度。接下来的1 行有n个正整数n:x1, ..., xn。
输出格式:
第1 行是最长不下降子序列的长度s。第2行是可取出的长度为s 的不下降子序列个数。第3行是允许在取出的序列中多次使用x1和xn时可取出的长度为s 的不下降子序列个数。
输入输出样例
4
3 6 2 5
2
2
3
说明
n≤500
Solution:
本题简单dp+最大流。
第一问直接煞笔dp。
第二问求最多取出多少个长度为$x=max(f[i])$的子序列,因为每个数要么不选要么只选1次,这样有上下界的题目,考虑拆点跑最大流咯,将每个数拆成$i\rightarrow i'$连流量为1,若$f[i]==1$则$s\rightarrow i$连流量为1,若$f[i]==x$则$i'\rightarrow t$连流量为1,若$f[i]==f[j]+1,j<i,a_j\leq a_i$则$j'\rightarrow i$连流量为1,跑最大流就好了。
第三问可以重复用$a_1$和$a_n$,那么改变的就是与这两点直接相关的边的流量了,我们在第二问的答案基础上,加入新边,$1\rightarrow 1'$流量inf,$n\rightarrow n'$流量inf,$s\rightarrow 1$流量inf,若$f[n]==x$则$n'\rightarrow t$流量inf,再跑下最大流就好了。
(实际上本题第三问有bug,比如最长不下降子序列长度为1,那么第三问答案就应该是inf了,inf不确定,于是乎出锅咯!反正实践证明没这数据,嘿嘿嘿!>.@_@.<)
代码:
/*Code by 520 -- 9.1*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=,M=,inf=0x7fffffff;
int n,a[N],f[N],s,t=;
int h[N],dis[N],to[M],net[M],w[M],cnt=;
int ans1,ans2; il void add(int u,int v,int c){
to[++cnt]=v,net[cnt]=h[u],w[cnt]=c,h[u]=cnt;
to[++cnt]=u,net[cnt]=h[v],w[cnt]=,h[v]=cnt;
} il bool bfs(){
queue<int>q;
memset(dis,-,sizeof(dis));
q.push(s),dis[s]=;
while(!q.empty()){
RE int u=q.front();q.pop();
for(RE int i=h[u];i;i=net[i])
if(dis[to[i]]==-&&w[i]) dis[to[i]]=dis[u]+,q.push(to[i]);
}
return dis[t+]!=-;
} int dfs(int u,int op){
if(u==t+)return op;
int flow=,used=;
for(RE int i=h[u];i;i=net[i]){
int v=to[i];
if(dis[v]==dis[u]+&&w[i]){
used=dfs(v,min(op,w[i]));
if(!used)continue;
flow+=used,op-=used;
w[i]-=used,w[i^]+=used;
if(!op)break;
}
}
if(!flow) dis[u]=-;
return flow;
} il void init(){
scanf("%d",&n);
For(i,,n) scanf("%d",&a[i]),f[i]=;
For(i,,n) For(j,,i-) if(a[i]>=a[j]) f[i]=max(f[i],f[j]+);
For(i,,n) ans1=max(ans1,f[i]);
printf("%d\n",ans1);
For(i,,n) {
add(i,i+n,);
if(f[i]==) add(i+n,t,);
if(f[i]==ans1) add(s,i,);
}
add(t,t+,inf);
For(i,,n) For(j,,i-) if(f[i]==f[j]+&&a[i]>=a[j]) add(i+n,j,);
while(bfs()) ans2+=dfs(s,inf);
printf("%d\n",ans2);
add(n+,t,inf),add(,n+,inf),add(n,n<<,inf);
if(f[n]==ans1) add(s,n,inf);
while(bfs()) ans2+=dfs(s,inf);
printf("%d\n",ans2);
} int main(){
init();
return ;
}
P2766 最长不下降子序列问题的更多相关文章
- 【24题】P2766最长不下降子序列问题
网络流二十四题 网络流是个好东西,希望我也会. 网络流?\(orz\ zsy!!!!!\) P2766 最长不下降子序列问题 考虑我们是如何\(dp\)这个\(LIS\)的. 我们是倒着推,设置\(d ...
- [**P2766** 最长不下降子序列问题](https://www.luogu.org/problemnew/show/P2766)
P2766 最长不下降子序列问题 考虑我们是如何\(dp\)这个\(LIS\)的. 我们是倒着推,设置\(dp(i)\)代表以\(i\)为起点的\(LIS\)是多少.转移太显然了 \[ dp(i)=m ...
- P2766 最长不下降子序列问题 网络流重温
P2766 最长不下降子序列问题 这个题目还是比较简单的,第一问就是LIS 第二问和第三问都是网络流. 第二问要怎么用网络流写呢,首先,每一个只能用一次,所以要拆点. 其次,我们求的是长度为s的不下降 ...
- P2766 最长不下降子序列问题 网络流
link:https://www.luogu.org/problemnew/show/P2766 题意 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的 ...
- 网络流 之 P2766 最长不下降子序列问题
题目描述 «问题描述: 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列. (3)如果允许在取出的序列中多次 ...
- 【题解】Luogu P2766 最长不下降子序列问题
原题传送门 实际还是比较套路的建图 先暴力dp一下反正数据很小 第一小问的答案即珂以求出数列的最长不下降子序列的长度s 考虑第二问如何做: 将每个点拆点 从前向后连一条流量为1的边 如果以它为终点的最 ...
- 洛谷P2766 最长不下降子序列问题(最大流)
传送门 第一问直接$dp$解决,求出$len$ 然后用$f[i]$表示以$i$为结尾的最长不下降子序列长度,把每一个点拆成$A_i,B_i$两个点,然后从$A_i$向$B_i$连容量为$1$的边 然后 ...
- 【Luogu】P2766最长不下降子序列问题(暴力网络流)
题目链接 水题qwq,数据都那么水. 我要是出数据的人我就卡$n^3$建图. qwq. 然而这么水的题我!居!然!没!有!1!A!!还!提!交!了!五!遍!!! md从现在开始要锻炼1A率了 看我从今 ...
- 洛谷 P2766 最长不下降子序列问【dp+最大流】
死于开小数组的WA?! 第一问n方dp瞎搞一下就成,f[i]记录以i结尾的最长不下降子序列.记答案为mx 第二问网络流,拆点限制流量,s向所有f[i]为1的点建(s,i,1),所有f[i]为mx(i+ ...
随机推荐
- day5 RHCE
19 .配置 iSCSI 服务端 (***先做这个题目**,挂载重启,机器会挂掉) 配置server0提供一个iSCSI服务磁盘名为iqn.2014-11.com.example:server0,并 ...
- logstash处理@timestamp时区
input { stdin { } } filter { #ruby { # code => "event.set('timestamp', event.get('@timestamp ...
- JVM知识(下)
目录 方法区 类型信息 方法信息 类变量 引用类的类加载 类引用 堆(Heap) GC 定义对象 数组引用 栈 栈帧 操作数栈 帧数据 本次主要介绍,JVM的方法区,堆,栈.以下内容主要还是参考< ...
- Git之hotfix热修复分支
1.假设你正在开发一个新功能, 需要新建一个new分支并切换: git checkout -b new 等价于 git branch new git checkout new 然后在这个new分支上已 ...
- Zookeeper-----Zookeeper概述
一:Zookeeper的概念? ZooKeeper是一种分布式协调服务,用于管理大型主机.在分布式环境中协调和管理服务是一个复杂的过程.ZooKeeper通过其简单的架构和API解决了这个问题.Zoo ...
- 【python 3.6】如何将list存入txt后,再读出list
今天遇到一个需求,就是将一个list文件读取后,存入一个txt配置文件.存入时,发现list文件无法直接存入,必须转为str模式. 但在读取txt时,就无法恢复成list类型来读取了(准确地说,即使强 ...
- thinkphp5框架生成二维码(二)
上篇已经讲过了SDK之类的,这个不再重复,有不知道的童鞋们,请去看上篇文章吧. 这里我用的方法比较老旧,大家有更好的方法,可以进行改良,还有linux服务器,记得给文件权限,否则生成的文件会失败的.大 ...
- libCurl 初步认识 - cur easy
cur easy接口简洁明了,主接口4个,辅接口5个. 主接口 初始化 + 配参数 + 执行 + 销毁 初始化 CURL* curl_easy_init() 获得CURL句柄,返回值需要判空. 配参数 ...
- 使用 Mesos 管理虚拟机
摘要 为了满足渲染.基因测序等计算密集型服务的需求,UCloud 推出了“计算工厂”产品,让用户可以快速创建大量的计算资源(虚拟机).该产品的背后,是一套基于 Mesos 的计算资源管理系统.本文简要 ...
- 数据库与数据仓库的比较Hbase——Hive
数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented).集成的(Integrate).相对稳定的(Non-Volatile).反映历史变化(Time Varian ...