题目描述

«问题描述:

给定正整数序列x1,...,xn 。

(1)计算其最长不下降子序列的长度s。

(2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列。

(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的不下降子序列。

«编程任务:

设计有效算法完成(1)(2)(3)提出的计算任务。

输入输出格式

输入格式:

第1 行有1个正整数n,表示给定序列的长度。接下来的1 行有n个正整数n:x1, ..., xn。

输出格式:

第1 行是最长不下降子序列的长度s。第2行是可取出的长度为s 的不下降子序列个数。第3行是允许在取出的序列中多次使用x1和xn时可取出的长度为s 的不下降子序列个数。

输入输出样例

输入样例#1:

4
3 6 2 5
输出样例#1:

2
2
3

说明

n≤500

Solution:

  本题简单dp+最大流。

  第一问直接煞笔dp。

  第二问求最多取出多少个长度为$x=max(f[i])$的子序列,因为每个数要么不选要么只选1次,这样有上下界的题目,考虑拆点跑最大流咯,将每个数拆成$i\rightarrow i'$连流量为1,若$f[i]==1$则$s\rightarrow i$连流量为1,若$f[i]==x$则$i'\rightarrow t$连流量为1,若$f[i]==f[j]+1,j<i,a_j\leq a_i$则$j'\rightarrow i$连流量为1,跑最大流就好了。

  第三问可以重复用$a_1$和$a_n$,那么改变的就是与这两点直接相关的边的流量了,我们在第二问的答案基础上,加入新边,$1\rightarrow 1'$流量inf,$n\rightarrow n'$流量inf,$s\rightarrow 1$流量inf,若$f[n]==x$则$n'\rightarrow t$流量inf,再跑下最大流就好了。

  (实际上本题第三问有bug,比如最长不下降子序列长度为1,那么第三问答案就应该是inf了,inf不确定,于是乎出锅咯!反正实践证明没这数据,嘿嘿嘿!>.@_@.<)

代码:

/*Code by 520 -- 9.1*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=,M=,inf=0x7fffffff;
int n,a[N],f[N],s,t=;
int h[N],dis[N],to[M],net[M],w[M],cnt=;
int ans1,ans2; il void add(int u,int v,int c){
to[++cnt]=v,net[cnt]=h[u],w[cnt]=c,h[u]=cnt;
to[++cnt]=u,net[cnt]=h[v],w[cnt]=,h[v]=cnt;
} il bool bfs(){
queue<int>q;
memset(dis,-,sizeof(dis));
q.push(s),dis[s]=;
while(!q.empty()){
RE int u=q.front();q.pop();
for(RE int i=h[u];i;i=net[i])
if(dis[to[i]]==-&&w[i]) dis[to[i]]=dis[u]+,q.push(to[i]);
}
return dis[t+]!=-;
} int dfs(int u,int op){
if(u==t+)return op;
int flow=,used=;
for(RE int i=h[u];i;i=net[i]){
int v=to[i];
if(dis[v]==dis[u]+&&w[i]){
used=dfs(v,min(op,w[i]));
if(!used)continue;
flow+=used,op-=used;
w[i]-=used,w[i^]+=used;
if(!op)break;
}
}
if(!flow) dis[u]=-;
return flow;
} il void init(){
scanf("%d",&n);
For(i,,n) scanf("%d",&a[i]),f[i]=;
For(i,,n) For(j,,i-) if(a[i]>=a[j]) f[i]=max(f[i],f[j]+);
For(i,,n) ans1=max(ans1,f[i]);
printf("%d\n",ans1);
For(i,,n) {
add(i,i+n,);
if(f[i]==) add(i+n,t,);
if(f[i]==ans1) add(s,i,);
}
add(t,t+,inf);
For(i,,n) For(j,,i-) if(f[i]==f[j]+&&a[i]>=a[j]) add(i+n,j,);
while(bfs()) ans2+=dfs(s,inf);
printf("%d\n",ans2);
add(n+,t,inf),add(,n+,inf),add(n,n<<,inf);
if(f[n]==ans1) add(s,n,inf);
while(bfs()) ans2+=dfs(s,inf);
printf("%d\n",ans2);
} int main(){
init();
return ;
}

P2766 最长不下降子序列问题的更多相关文章

  1. 【24题】P2766最长不下降子序列问题

    网络流二十四题 网络流是个好东西,希望我也会. 网络流?\(orz\ zsy!!!!!\) P2766 最长不下降子序列问题 考虑我们是如何\(dp\)这个\(LIS\)的. 我们是倒着推,设置\(d ...

  2. [**P2766** 最长不下降子序列问题](https://www.luogu.org/problemnew/show/P2766)

    P2766 最长不下降子序列问题 考虑我们是如何\(dp\)这个\(LIS\)的. 我们是倒着推,设置\(dp(i)\)代表以\(i\)为起点的\(LIS\)是多少.转移太显然了 \[ dp(i)=m ...

  3. P2766 最长不下降子序列问题 网络流重温

    P2766 最长不下降子序列问题 这个题目还是比较简单的,第一问就是LIS 第二问和第三问都是网络流. 第二问要怎么用网络流写呢,首先,每一个只能用一次,所以要拆点. 其次,我们求的是长度为s的不下降 ...

  4. P2766 最长不下降子序列问题 网络流

    link:https://www.luogu.org/problemnew/show/P2766 题意 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的 ...

  5. 网络流 之 P2766 最长不下降子序列问题

    题目描述 «问题描述: 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列. (3)如果允许在取出的序列中多次 ...

  6. 【题解】Luogu P2766 最长不下降子序列问题

    原题传送门 实际还是比较套路的建图 先暴力dp一下反正数据很小 第一小问的答案即珂以求出数列的最长不下降子序列的长度s 考虑第二问如何做: 将每个点拆点 从前向后连一条流量为1的边 如果以它为终点的最 ...

  7. 洛谷P2766 最长不下降子序列问题(最大流)

    传送门 第一问直接$dp$解决,求出$len$ 然后用$f[i]$表示以$i$为结尾的最长不下降子序列长度,把每一个点拆成$A_i,B_i$两个点,然后从$A_i$向$B_i$连容量为$1$的边 然后 ...

  8. 【Luogu】P2766最长不下降子序列问题(暴力网络流)

    题目链接 水题qwq,数据都那么水. 我要是出数据的人我就卡$n^3$建图. qwq. 然而这么水的题我!居!然!没!有!1!A!!还!提!交!了!五!遍!!! md从现在开始要锻炼1A率了 看我从今 ...

  9. 洛谷 P2766 最长不下降子序列问【dp+最大流】

    死于开小数组的WA?! 第一问n方dp瞎搞一下就成,f[i]记录以i结尾的最长不下降子序列.记答案为mx 第二问网络流,拆点限制流量,s向所有f[i]为1的点建(s,i,1),所有f[i]为mx(i+ ...

随机推荐

  1. python 逆波兰式

    逆波兰式,也叫后缀表达式 技巧:为简化代码,引入一个不存在的运算符#,优先级最低.置于堆栈底部 class Stack(object): '''堆栈''' def __init__(self): se ...

  2. day 7 __new___

    1 __new__方法 创建对象 实质是:调用父类的__new__方法创建的对象 class Dog(object): def __init__(self): print("---init方 ...

  3. 解决 mysql in 查询排序问题

    select id,title from za_item where -- id ,) 返回的结果第一条是对应id是1000,第二条是1003. 如果我们想让结果和in里面的排序一致,可以这么做. s ...

  4. .Net FrameWork常用类

    System类 System.Environment类: 提供有关当前环境和平台的信息以及操作它们的方法. System.Console类      :表示控制台应用程序的标准输入流.输出流和错误流. ...

  5. RDS for MySQL有哪些限制

    原文来自:https://help.aliyun.com/knowledge_detail/41834.html 1.不支持在命令行创建数据库和数据库账号.只支持在RDS管理控制台操作. 2.不支持M ...

  6. SQL注入--显注和盲注中过滤逗号绕过

    SQL注入逗号绕过 1.联合查询显注绕过逗号 在联合查询时使用 UNION SELECT 1,2,3,4,5,6,7..n 这样的格式爆显示位,语句中包含了多个逗号,如果有WAF拦截了逗号时,我们的联 ...

  7. 第四篇 Postman之Pre-request Script(前置处理器:JS之 YYYY-MM-DD HH:MM:SS)

    本篇来讲讲Pre-request Script 前置处理器,定义在发送request之前需要运行的一些脚本,应用场景主要是设置全局变量和环境变量. 本例子也是项目中遇到的,需要修改与客户的预约时间,但 ...

  8. USACO 2.3.4 Money Systems 货币系统(完全背包)

    Description 母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统. [In their own rebellious way],,他们对货币的数值感到好奇. 传统地,一个货币系统是 ...

  9. Weighted Median

    For n elements x1, x2, ..., xn with positive integer weights w1, w2, ..., wn. The weighted median is ...

  10. POJ 1971 Parallelogram Counting

    题目链接: http://poj.org/problem?id=1971 题意: 二维空间给n个任意三点不共线的坐标,问这些点能够组成多少个不同的平行四边形. 题解: 使用的平行四边形的判断条件:对角 ...