第一问是来搞笑的。由欧拉函数的计算公式容易发现φ(i2)=iφ(i)。那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 。这样就有了杜教筛所要求的容易算前缀和的两个函数。一通套路即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
#define P 1000000007
#define N 1000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,phi[N],iphi[N],prime[N],cnt,inv6=;
map<int,int> f;
bool flag[N];
inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int sumone(int x){return (1ll*x*(x+)>>)%P;}
int sumtwo(int x){return 1ll*x*(x+)%P*(x<<|)%P*inv6%P;}
int work(int x)
{
if (x<=min(n,N-)) return iphi[x];
if (f.find(x)!=f.end()) return f[x];
int s=sumtwo(x);
for (int i=;i<=x;i++)
{
int t=x/(x/i);
inc(s,P-1ll*(sumone(t)-sumone(i-)+P)*work(x/i)%P);
i=t;
}
f[x]=s;return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4916.in","r",stdin);
freopen("bzoj4916.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();cout<<<<endl;
flag[]=;phi[]=;
for (int i=;i<=min(n,N-);i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-;
for (int j=;j<=cnt&&prime[j]*i<=min(n,N-);j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) {phi[prime[j]*i]=phi[i]*prime[j];break;}
phi[prime[j]*i]=phi[i]*(prime[j]-);
}
}
for (int i=;i<=min(n,N-);i++) iphi[i]=1ll*i*phi[i]%P;
for (int i=;i<=min(n,N-);i++) inc(iphi[i],iphi[i-]);
cout<<work(n);
return ;
}

BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)的更多相关文章

  1. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  2. 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】

    首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...

  3. 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】

    和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...

  4. bzoj 3944: Sum【莫比乌斯函数+欧拉函数+杜教筛】

    一道杜教筛的板子题. 两个都是积性函数,所以做法是一样的.以mu为例,设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1} ...

  5. 51nod 1227 平均最小公倍数【欧拉函数+杜教筛】

    以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...

  6. 【luogu3768】简单的数学题 欧拉函数(欧拉反演)+杜教筛

    题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . ...

  7. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  8. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  9. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

随机推荐

  1. cdh中hdfs非ha环境迁移Namenode与secondaryNamenode,从uc机器到阿里;

    1.停掉外部接入服务: 2 NameNode Metadata备份: 2.1 备份fsimage数据,(该操作适用HA和非HA的NameNode),使用如下命令进行备份: [root@cdh01 df ...

  2. 验证码示例代码演示——以php为例

    运行 · 修改index.php(图片验证码的生成示例) [html] view plain copy initNECaptcha({ captchaId: 'YOUR_CAPTCHA_ID', // ...

  3. 【JUC源码解析】LinkedBlockingQueue

    简介 一个基于链表的阻塞队列,FIFO的顺序,head指向的元素等待时间最长,tail指向的元素等待时间最短,新元素从队列尾部添加,检索元素从队列头部开始,队列的容量,默认是Integer#MAX_V ...

  4. 母版页 MasterPage

    母版页是一个扩展名为.master的ASP.NET文件,主要是为了应用程序创建统一的用户功能界面和样式. ContentPlaceHolder控件只能在母版页中使用,在平常的web页面使用,会发生解析 ...

  5. Python数据挖掘——基础知识

    Python数据挖掘——基础知识 数据挖掘又称从数据中 挖掘知识.知识提取.数据/模式分析 即为:从数据中发现知识的过程 1.数据清理 (消除噪声,删除不一致数据) 2.数据集成 (多种数据源 组合在 ...

  6. curl常用用法

    -v显示请求详细信息 curl www.baidu.com -v -X 指定请求方式 GET请求 curl -X GET http://localhost:8080/search?data=123 # ...

  7. mysql基础知识大全

    前言:本文主要为mysql基础知识的大总结,mysql的基础知识很多,这里作简单概括性的介绍,具体的细节还是需要自行搜索.当然本文还有很多遗漏的地方,后续会慢慢补充完善. 数据库和数据库软件 数据库是 ...

  8. react native组件的创建

    react native组件的创建 react文件加载顺序: react项目启动后,先加载index.js.在index.js中可以指向首页. import { AppRegistry } from ...

  9. Is It A Tree?(并查集)

    Description A tree is a well-known data structure that is either empty (null, void, nothing) or is a ...

  10. UI分析之石家庄铁道大学官网

    点击进入石家庄铁道大学的官方网站,首先映入眼帘的是“石家庄铁道大学”七个大字,配以蓝色背景和学校的俯瞰图,给人一种严谨又不失清新的感觉. 学校的网站首页界面主要有九个界面,分别是网站首页,学校概况,组 ...