题目描述

给出 $n$ 和 $m$ ,$m$ 次询问。每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是否必胜。

$n\le 10^9$ ,$m\le 10^5$ ,$a\ge 2$ ,$b\ge 1$ ,$a^b\le n$


题解

博弈论+dp

显然可以想到预处理 $f[i][j]$ 表示 $a$ 为 $i$ ,$b$ 为 $j$ 时先手能否胜利。显然由 $f[i+1][j]$ 和 $f[i][j+1]$ 推出。

但是由于 $n$ 有 $10^9$ 就会GG...

我们考虑:当 $i^j\le n$ 且 $i^{j+1}>n$ 时,先手只能选择将 $a$ 加一,后手也一样。因此胜负已定。

因此当 $b=1$ 时可以只预处理到 $f[\sqrt n][1]$ ,当 $a>\sqrt n$ 时显然可以 $O(1)$ 判断。

时间复杂度 $O(m+\sqrt n\log n)$ 。

其实对于每一个 $b$ 都可以用同样的方法判断,时间复杂度变为 $O(m+\sum\limits_{i=2}^{\log n}\sqrt[i]{n})=O(m+\sqrt n)$ 但没什么必要。。。

#include <cstdio>
int p[32010][31] , log[32010] , f[32010][31]; //0: win
int main()
{
int n , m , i , j , a , b;
scanf("%d%d" , &n , &m);
for(i = 2 ; i <= 32000 ; i ++ )
{
if(i > n) log[i] = 0;
else
{
p[i][1] = i;
for(j = 2 ; 1ll * p[i][j - 1] * i <= n ; j ++ )
p[i][j] = p[i][j - 1] * i;
log[i] = j - 1;
}
}
f[32001][1] = !((n - 32001) & 1);
for(i = 32000 ; i != 1 ; i -- )
for(j = log[i] ; j ; j -- )
f[i][j] = !(f[i][j + 1] || f[i + 1][j]);
while(m -- )
{
scanf("%d%d" , &a , &b);
puts((a > 32000 ? !((n - a) & 1) : f[a][b]) ? "No" : "Yes");
}
return 0;
}

【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp的更多相关文章

  1. 【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)

    [UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\ ...

  2. [UOJ Round#4 A] [#51] 元旦三侠的游戏 【容斥 + 递推】

    题目链接:UOJ - 51 据说这题与 CF 39E 类似. 题目分析 一看题目描述,啊,博弈论,不会!等待爆零吧... 这时,XCJ神犇拯救了我,他说,这题可以直接搜啊. 注意!是用记忆化搜索,状态 ...

  3. [UOJ #51]【UR #4】元旦三侠的游戏

    题目大意:给$n$,一个游戏,给$a,b$,两个人,每人每次可以把$a$或$b$加一,要求$a^b\leqslant n$,无法操作人输.有$m$次询问,每次给你$a,b$,问先手可否必胜 题解:令$ ...

  4. 【UR #4】元旦三侠的游戏(博弈论+记忆化)

    http://uoj.ac/contest/6/problem/51 题意:给m($m \le 10^5$)个询问,每次给出$a, b(a^b \le n, n \le 10^9)$,对于每一组$a, ...

  5. A. 【UR #4】元旦三侠的游戏

    题解: 挺水的吧 会发现当b不等于1的时候,状态只有sigma i x^(1/i) 显然这东西很小.. 然后我们会发现每个点向两个点动 定义必胜点和必败点 当一个点有一条边连向必败点 那么它就是必胜点 ...

  6. uoj51 元旦三侠的游戏

    题意:询问a,b,n.每次可以a+1或b+1,保证a^b<=n,不能操作者输.问先手是否赢? n<=1e9. 标程: #include<cstdio> #include< ...

  7. UOJ.52.[UR #4]元旦激光炮(交互 思路)

    题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...

  8. BZOJ_1864_[Zjoi2006]三色二叉树_树形DP

    BZOJ_1864_[Zjoi2006]三色二叉树_树形DP 题意: 分析:递归建树,然后DP,从子节点转移. 注意到红色和蓝色没有区别,因为我们可以将红蓝互换而方案是相同的.这样的话我们只需要知道当 ...

  9. UOJ 【UR #5】怎样跑得更快

    [UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...

随机推荐

  1. 20155339 《信息安全技术》实验二、Windows口令破解实验报告

    20155339 <信息安全技术>实验二.Windows口令破解实验报告 实验目的 了解Windows口令破解原理 对信息安全有直观感性认识 能够运用工具实现口令破解 系统环境 Windo ...

  2. BZOJ2140_稳定婚姻_KEY

    题目传送门 暴力直接对于每个点跑一遍二分图匹配,能拿四十分. 然而我们考虑正解. 对于一对Couple我们建♂->♀的一条边,对于一对曾经有恋情的情侣我们建♀->♂的一条边. 跑Tarja ...

  3. 打豪车应用:uber详细攻略(附100元优步uber优惠码、uber优惠券、优步优惠码、优步优惠券)

    在嘀嘀打车和快的打车交战热闹的时候,美国的打车应用uber进入中国.与在美国以个人司机注册做 Uber 司机为主的模式不同,Uber 在中国采用与租车公司合作.由租车公司提供车辆和司机的模式,同时中文 ...

  4. 【mysql优化】mysql count(*)、count(1)、count(主键字段)、count(非主键字段)哪个性能最佳

    测试结果为:count(*)和count(1)基本相等,count(非主键字段)最耗性能 -- 数据量 708254select count(*) from tmp_test1;-- avg 0.22 ...

  5. 【转】ERROR 2003 (HY000): Can't connect to MySQL server on '192.168.1.165' (113)

    原文转自:http://blog.csdn.net/chengyuqiang/article/details/54285857 1.程序报错: com.mysql.jdbc.exceptions.jd ...

  6. JavaScript事件冒泡和捕获

    事件捕获指的是从document到触发事件的那个节点,即自上而下的去触发事件. 事件冒泡是自下而上的去触发事件. 绑定事件方法的第三个参数,就是控制事件触发顺序是否为事件捕获.true,事件捕获:fa ...

  7. Gradle初使用

    我以前一直使用Maven来构建工程,这两天突然发现gradle也非常好用,记录一下自己使用gradle的过程. Gradle的下载与配置 本次选择下载的是gradle3.5版本,没选最新的gradle ...

  8. Kafka安装之二 在CentOS 7上安装Kafka

    一.简介 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写.Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这 ...

  9. 5 种使用 Python 代码轻松实现数据可视化的方法

    数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...

  10. 作业 20181120-3 Beta发布

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2408 小组介绍 组长:付佳 组员:张俊余 李文涛 孙赛佳 田良 于洋 段 ...