题目描述

给出 $n$ 和 $m$ ,$m$ 次询问。每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是否必胜。

$n\le 10^9$ ,$m\le 10^5$ ,$a\ge 2$ ,$b\ge 1$ ,$a^b\le n$


题解

博弈论+dp

显然可以想到预处理 $f[i][j]$ 表示 $a$ 为 $i$ ,$b$ 为 $j$ 时先手能否胜利。显然由 $f[i+1][j]$ 和 $f[i][j+1]$ 推出。

但是由于 $n$ 有 $10^9$ 就会GG...

我们考虑:当 $i^j\le n$ 且 $i^{j+1}>n$ 时,先手只能选择将 $a$ 加一,后手也一样。因此胜负已定。

因此当 $b=1$ 时可以只预处理到 $f[\sqrt n][1]$ ,当 $a>\sqrt n$ 时显然可以 $O(1)$ 判断。

时间复杂度 $O(m+\sqrt n\log n)$ 。

其实对于每一个 $b$ 都可以用同样的方法判断,时间复杂度变为 $O(m+\sum\limits_{i=2}^{\log n}\sqrt[i]{n})=O(m+\sqrt n)$ 但没什么必要。。。

#include <cstdio>
int p[32010][31] , log[32010] , f[32010][31]; //0: win
int main()
{
int n , m , i , j , a , b;
scanf("%d%d" , &n , &m);
for(i = 2 ; i <= 32000 ; i ++ )
{
if(i > n) log[i] = 0;
else
{
p[i][1] = i;
for(j = 2 ; 1ll * p[i][j - 1] * i <= n ; j ++ )
p[i][j] = p[i][j - 1] * i;
log[i] = j - 1;
}
}
f[32001][1] = !((n - 32001) & 1);
for(i = 32000 ; i != 1 ; i -- )
for(j = log[i] ; j ; j -- )
f[i][j] = !(f[i][j + 1] || f[i + 1][j]);
while(m -- )
{
scanf("%d%d" , &a , &b);
puts((a > 32000 ? !((n - a) & 1) : f[a][b]) ? "No" : "Yes");
}
return 0;
}

【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp的更多相关文章

  1. 【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)

    [UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\ ...

  2. [UOJ Round#4 A] [#51] 元旦三侠的游戏 【容斥 + 递推】

    题目链接:UOJ - 51 据说这题与 CF 39E 类似. 题目分析 一看题目描述,啊,博弈论,不会!等待爆零吧... 这时,XCJ神犇拯救了我,他说,这题可以直接搜啊. 注意!是用记忆化搜索,状态 ...

  3. [UOJ #51]【UR #4】元旦三侠的游戏

    题目大意:给$n$,一个游戏,给$a,b$,两个人,每人每次可以把$a$或$b$加一,要求$a^b\leqslant n$,无法操作人输.有$m$次询问,每次给你$a,b$,问先手可否必胜 题解:令$ ...

  4. 【UR #4】元旦三侠的游戏(博弈论+记忆化)

    http://uoj.ac/contest/6/problem/51 题意:给m($m \le 10^5$)个询问,每次给出$a, b(a^b \le n, n \le 10^9)$,对于每一组$a, ...

  5. A. 【UR #4】元旦三侠的游戏

    题解: 挺水的吧 会发现当b不等于1的时候,状态只有sigma i x^(1/i) 显然这东西很小.. 然后我们会发现每个点向两个点动 定义必胜点和必败点 当一个点有一条边连向必败点 那么它就是必胜点 ...

  6. uoj51 元旦三侠的游戏

    题意:询问a,b,n.每次可以a+1或b+1,保证a^b<=n,不能操作者输.问先手是否赢? n<=1e9. 标程: #include<cstdio> #include< ...

  7. UOJ.52.[UR #4]元旦激光炮(交互 思路)

    题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...

  8. BZOJ_1864_[Zjoi2006]三色二叉树_树形DP

    BZOJ_1864_[Zjoi2006]三色二叉树_树形DP 题意: 分析:递归建树,然后DP,从子节点转移. 注意到红色和蓝色没有区别,因为我们可以将红蓝互换而方案是相同的.这样的话我们只需要知道当 ...

  9. UOJ 【UR #5】怎样跑得更快

    [UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...

随机推荐

  1. 20145209刘一阳《网络对抗》Exp8 Web基础

    20145209刘一阳<网络对抗>Exp8 Web基础 基础问题回答 1.什么是表单? 表单是一个包含表单元素的区域,表单元素是允许用户在表单中(比如:文本域.下拉列表.单选框.复选框等等 ...

  2. 【LG4148】简单题

    [LG4148]简单题 题面 洛谷 题解 \(kdt\)模板题呀... #include <iostream> #include <cstdio> #include <c ...

  3. 【bzoj4827】[Hnoi2017]礼物 FFT

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天 ...

  4. angularjs 路由机制

    前言 AngularJS路由主要有内置的ngRoute和一个基于ngRoute开发的第三方路由模块ui-router,内置的ngRoute有时满足开发需求,使用ui-router可以解决很多原生ngR ...

  5. Python函数标注

    Python函数标注 是关于用户自定义函数中使用的类型的完全可选元数据信息. 函数标注 以Python字典的形式存放在函数的 __annotations__ 属性中,并且不会影响函数的任何其他部分. ...

  6. Spring 定时任务Scheduled 开发详细图文

    Spring 定时任务Scheduled 开发 文章目录 一.前言 1.1 定时任务 1.2 开发环境 1.3 技术实现 二.创建包含WEB.xml 的Maven 项目 2.1 创建多模块项目task ...

  7. python的30个编程技巧

     1.原地交换两个数字 x, y =10, 20 print(x, y) y, x = x, y print(x, y) 10 20 20 10 2.链状比较操作符 n = 10 print(1 &l ...

  8. 音频分析框架pyAudioAnalysis文档

    “ pyAudioAnalysis是一个非常好用且强大的音频分析开源工具,能实现音频的特征提取.分类和回归模型的训练和执行,以及其他一些实用的功能.此外,本文档并非直译,也有部分比较简略,可以结合源码 ...

  9. 记因内核版本错误导致U盘不能识别的问题解决

    U盘插上电脑,发现没有自动挂载.然后运行sudo fdisk -l一看,发现并没有U盘所对应的设备,也就是U盘不能识别了!以前从没在Linux上遇到这种问题,通过查资料得知,要识别U盘,需要装载usb ...

  10. 记录一次爬虫报错:Message: Failed to decode response from marionette

    由于标题中的错误引发: Message: Tried to run command without establishing a connection 解释: 先说一下我的爬虫架构,用的是firefo ...