题目描述

给出 $n$ 和 $m$ ,$m$ 次询问。每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是否必胜。

$n\le 10^9$ ,$m\le 10^5$ ,$a\ge 2$ ,$b\ge 1$ ,$a^b\le n$


题解

博弈论+dp

显然可以想到预处理 $f[i][j]$ 表示 $a$ 为 $i$ ,$b$ 为 $j$ 时先手能否胜利。显然由 $f[i+1][j]$ 和 $f[i][j+1]$ 推出。

但是由于 $n$ 有 $10^9$ 就会GG...

我们考虑:当 $i^j\le n$ 且 $i^{j+1}>n$ 时,先手只能选择将 $a$ 加一,后手也一样。因此胜负已定。

因此当 $b=1$ 时可以只预处理到 $f[\sqrt n][1]$ ,当 $a>\sqrt n$ 时显然可以 $O(1)$ 判断。

时间复杂度 $O(m+\sqrt n\log n)$ 。

其实对于每一个 $b$ 都可以用同样的方法判断,时间复杂度变为 $O(m+\sum\limits_{i=2}^{\log n}\sqrt[i]{n})=O(m+\sqrt n)$ 但没什么必要。。。

#include <cstdio>
int p[32010][31] , log[32010] , f[32010][31]; //0: win
int main()
{
int n , m , i , j , a , b;
scanf("%d%d" , &n , &m);
for(i = 2 ; i <= 32000 ; i ++ )
{
if(i > n) log[i] = 0;
else
{
p[i][1] = i;
for(j = 2 ; 1ll * p[i][j - 1] * i <= n ; j ++ )
p[i][j] = p[i][j - 1] * i;
log[i] = j - 1;
}
}
f[32001][1] = !((n - 32001) & 1);
for(i = 32000 ; i != 1 ; i -- )
for(j = log[i] ; j ; j -- )
f[i][j] = !(f[i][j + 1] || f[i + 1][j]);
while(m -- )
{
scanf("%d%d" , &a , &b);
puts((a > 32000 ? !((n - a) & 1) : f[a][b]) ? "No" : "Yes");
}
return 0;
}

【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp的更多相关文章

  1. 【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)

    [UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\ ...

  2. [UOJ Round#4 A] [#51] 元旦三侠的游戏 【容斥 + 递推】

    题目链接:UOJ - 51 据说这题与 CF 39E 类似. 题目分析 一看题目描述,啊,博弈论,不会!等待爆零吧... 这时,XCJ神犇拯救了我,他说,这题可以直接搜啊. 注意!是用记忆化搜索,状态 ...

  3. [UOJ #51]【UR #4】元旦三侠的游戏

    题目大意:给$n$,一个游戏,给$a,b$,两个人,每人每次可以把$a$或$b$加一,要求$a^b\leqslant n$,无法操作人输.有$m$次询问,每次给你$a,b$,问先手可否必胜 题解:令$ ...

  4. 【UR #4】元旦三侠的游戏(博弈论+记忆化)

    http://uoj.ac/contest/6/problem/51 题意:给m($m \le 10^5$)个询问,每次给出$a, b(a^b \le n, n \le 10^9)$,对于每一组$a, ...

  5. A. 【UR #4】元旦三侠的游戏

    题解: 挺水的吧 会发现当b不等于1的时候,状态只有sigma i x^(1/i) 显然这东西很小.. 然后我们会发现每个点向两个点动 定义必胜点和必败点 当一个点有一条边连向必败点 那么它就是必胜点 ...

  6. uoj51 元旦三侠的游戏

    题意:询问a,b,n.每次可以a+1或b+1,保证a^b<=n,不能操作者输.问先手是否赢? n<=1e9. 标程: #include<cstdio> #include< ...

  7. UOJ.52.[UR #4]元旦激光炮(交互 思路)

    题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...

  8. BZOJ_1864_[Zjoi2006]三色二叉树_树形DP

    BZOJ_1864_[Zjoi2006]三色二叉树_树形DP 题意: 分析:递归建树,然后DP,从子节点转移. 注意到红色和蓝色没有区别,因为我们可以将红蓝互换而方案是相同的.这样的话我们只需要知道当 ...

  9. UOJ 【UR #5】怎样跑得更快

    [UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...

随机推荐

  1. 2016-2017-2 20155322 实验三 敏捷开发与XP实践

    2016-2017-2 20155322 实验三 敏捷开发与XP实践 实验内容 XP基础 XP核心实践 相关工具 实验知识点 敏捷开发(Agile Development)是一种以人为核心.迭代.循序 ...

  2. [2016北京集训试题8]连在一起的幻想乡[dp+无向图计数]

    Description Solution 本博客参考yww大佬的博客,为了加深理解我就自己再写一遍啦. 以下的“无向图”均无重边无自环. 定义f0[n]为n个点构成的无向图个数,f1[n]为n个点构成 ...

  3. 优步uber司机申请了为什么一直没有通过审核,帐号也显示未激活

    优步uber现在是越来越火,申请注册成为优步uber司机的人数也日剧增多,申请了的车主都知道,申请后要等待审核,审核通过才可以激活帐号,快的运气好的,三五天不到一个星期就激活了,慢点的得大半个月,还有 ...

  4. DIRECT3D状态详解

    Microsoft® Direct3D®设备是一个状态机.应用程序设置光照.渲染和变换模块的状态,然后在渲染时传递数据给它们. 本节描述图形流水线用到的所有不同类型的状态. 渲染状态 取样器状态 纹理 ...

  5. Redis可视化客户端管理Web UI工具收集

    https://github.com/uglide/RedisDesktopManager(推荐,全平台支持的桌面UI工具) Web方案: https://github.com/ErikDubbelb ...

  6. 原生与JS交互 iOS

      前言 Hybrid App(混合模式移动应用)是指介于web-app.native-app这两者之间的app,兼具“Native App良好用户交互体验的优势”和“Web App跨平台开发的优势” ...

  7. scrapy 爬取知乎问题、答案 ,并异步写入数据库(mysql)

      python版本  python2.7 爬取知乎流程: 一 .分析 在访问知乎首页的时候(https://www.zhihu.com),在没有登录的情况下,会进行重定向到(https://www. ...

  8. selenium webdriver API详解(二)

    本系列主要讲解webdriver常用的API使用方法(注意:使用前请确认环境是否安装成功,浏览器驱动是否与谷歌浏览器版本对应) 一:获取当前页面的title(一般获取title用于断言) from s ...

  9. 前端基础HTML

    web的服务本质 浏览器发送请求>>>HTTP协议>>>服务端接受请求>>>服务端返回响应>>>服务端把HTML文件内容发给浏览 ...

  10. SQL Server临时表漫谈

    SQL Server是微软的关系型数据库,对于刚入门的我是一个非常友好的开发工具.可视化界面的安装与操作,非常适合刚入门的我. 其实大家要找这方面的资料,在网上一搜一大堆,这里我就不赘述那些了,基本都 ...