题意:一个集合S的优美值定义为:最大的x,满足对于任意i∈[1,x],都存在一个S的子集S',使得S'中元素之和为i。

给定n个集合,对于每一次询问,指定一个集合S1和一个集合S2,以及一个数k,要求选择一个S2的子集S3(|S3|<=k),使得S1∪S3的优美值最大。
(集合元素可以重复)
 
我们首先考虑对于集合S1,能否求出它的最大优美值。
  首先排序一遍,对于前i个元素,如果它的最大优美值为v,那么当S1[i+1]>v+1时,前i+1个元素的最大优美值依然为v,否则为v+S1[i+1].此处易证。
  也就是说集合S1的最大优美值等于排序后集合S1的使得S1[i+1]>Sum[i]+1成立的最大前缀和.
再考虑S2到底加入哪些元素可以使得S1的优美值最大呢。
  首先可以肯定的是,由于加入的元素数量有限制,因此S2应该尽量加对S1的优美值增加最大的元素,由上面可以得知,应该为使得S2[i]<=v+1的最大的S2[i].
  这样之后v就变成了v+S2[i],此时集合S1又有可能有元素可以利用了,这样一直进行K次。
要确保算法复杂度即可能低的情况下,可以使用单调队列来维护上面的操作。
因此,总时间复杂度为O(log(nm)+T*m).
 
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... VI v[N];
LL val[N], que[N];
int p[N], head, tail; void sol(int x, int &q, LL &w){
FO(i,q,v[x].size()) {
if (v[x][i]>w+) break;
w+=v[x][i]; ++q;
}
}
int main ()
{
int n, m, x, A, B, K, T;
n=Scan();
FOR(i,,n) {
m=Scan();
while (m--) x=Scan(), v[i].pb(x);
sort(v[i].begin(),v[i].end());
p[i]=m;
FO(j,,v[i].size()) {
if (v[i][j]>val[i]+) {p[i]=j; break;}
val[i]+=v[i][j];
}
}
T=Scan();
while (T--) {
A=Scan(); B=Scan(); K=Scan();
int q=p[A];
LL w=val[A];
head=-; tail=;
FO(i,,v[B].size()) {
while (v[B][i]>w+) {
if (head<tail || !K) break;
if (head>=tail&&K) w+=que[head], sol(A,q,w), --head, --K;
}
if (v[B][i]<=w+) {
que[++head]=v[B][i];
while (head-tail+>K) ++tail;
}
if (head<tail || !K) break;
}
if (K) while (head>=tail) w+=que[tail], sol(A,q,w), ++tail;
printf("%lld\n",w);
}
return ;
}

51nod 1821 最优集合(思维+单调队列)的更多相关文章

  1. 51NOD 1821 最优集合 栈

    1821 最优集合   一个集合S的优美值定义为:最大的x,满足对于任意i∈[1,x],都存在一个S的子集S',使得S'中元素之和为i. 给定n个集合,对于每一次询问,指定一个集合S1和一个集合S2, ...

  2. 51NOD 1821 最优集合 [并查集]

    传送门 题意: 一个集合S的优美值定义为:最大的x,满足对于任意i∈[1,x],都存在一个S的子集S',使得S'中元素之和为i. 给定n个集合,对于每一次询问,指定一个集合S1和一个集合S2,以及一个 ...

  3. 【洛谷】【动态规划+单调队列】P1725 琪露诺

    [题目描述:] 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪露诺决定到河 ...

  4. poj 1821 Fence(单调队列优化DP)

    poj 1821 Fence \(solution:\) 这道题因为每一个粉刷的人都有一块"必刷的木板",所以可以预见我们的最终方案里的粉刷匠一定是按其必刷的木板的顺序排列的.这就 ...

  5. poj 1821 Fence 单调队列优化dp

    /* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...

  6. 51nod 1275 连续字段的差异(单调队列)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1275 题意: 思路: 固定某个端点,然后去寻找满足能满足要求的最大区间, ...

  7. 51nod 1050 循环数组最大子段和 单调队列优化DP

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1050 这个呢,这个题之前 求一遍最大值  然后求一遍最小值 ...

  8. POJ - 1821 单调队列优化DP + 部分笔记

    题意:n个墙壁m个粉刷匠,每个墙壁至多能被刷一次,每个粉刷匠要么不刷,要么就粉刷包含第Si块的长度不超过Li的连续墙壁(中间可不刷),每一块被刷的墙壁都可获得Pi的利润,求最大利润 避免重复粉刷: 首 ...

  9. POJ 1821 单调队列+dp

    题目大意:有K个工人,有n个墙,现在要给墙涂色.然后每个工人坐在Si上,他能刷的最大范围是Li,且必须是一个连续子区间,而且必须过Si,他刷完后能获得Pi钱 思路:定义dp[i][j]表示前i个人,涂 ...

随机推荐

  1. 20155321 2016-2017-2《Java程序设计》课堂实践项目2

    20155321 2016-2017-2<Java程序设计>课堂实践项目2 实践内容 编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能,要求MyCP支持两个参数: ...

  2. C语言复习20170716

    C语言复习20170716 C数据类型 图片来自:C语言基本数据类型简介 C语言程序处理的数据有常量和变量两种形式. 常量是在程序中不能改变其值的量.例如:整型常量.实型常量.字符常量.字符串常量和枚 ...

  3. wpf- DataGrid 常用属性和事件

    组件所在命名空间: System.Windows.Controls 组件常用方法: BeginEdit:使DataGrid进入编辑状态. CancelEdit:取消DataGrid的编辑状态. Col ...

  4. C#基础之反射

    虽然还在学校读书,反射实际写的不多.但感觉反射在程序开发中用得还是挺多的,对我来说也是.NET中的一个难点.通过反射,我们可以在运行时获得.NET中的每一个类型的成员,这些类型包括类.结构.委托和枚举 ...

  5. 北京Uber优步司机奖励政策(4月10日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  6. 【转载】C++资源之不完全导引

    1,前言 无数次听到“我要开始学习C++!”的呐喊,无数次听到“C++太复杂了,我真的学不会”的无奈.Stan Lippman先生曾在<C++ Primer>一书中指出“C++是最为难学的 ...

  7. js灵活处理日期(函实例)

    基础方法: var dd = new Date() dd.getFullYear() dd.getMonth() dd.getDate() dd.getDay() //获取星期几(0~6) dd.ge ...

  8. Lua学习笔记(3):运算符

    算术运算符 运算符 描述 + 加法运算符 - 减法运算符 * 乘法运算符 / 除法运算符 % 取模运算符 ^ 乘幂 A=3 print(A^2)输出9 关系运算符 ~= 不等于 == 等于 > ...

  9. 如何隐藏掉SQL Server中自带系统数据库,数据表,存储过程等显示文件,只显示用户的数据库,数据表等文件

    企业管理器了,---->   编辑该数据库的注册属性--->“常规”属性页下面-->“显示系统数据库和系统对象”的选项去掉

  10. Python:列表操作总结

    一.创建一个列表 只要把逗号分隔的不同数据项使用方括号括起来即可 list1=['physics','chemistry',1997,2000] list2=[1,2,3,4,5,6,7] [注]:1 ...