最差适应算法
#ifdef USING_WORST_FIT
{
//先找到第一个满足要求的空洞,
//再以第一个为标准寻找最适合的空洞。
//当最适合的空洞完全吻合
//就直接划给它,当空洞较大时就切割。 //首先注册目标指针、目标前一个指针、头指针
//记录目标大小和目前最适合大小
register struct hole *hp;
register struct hole *prevAim_ptr;
register struct hole *Aim_ptr;
phys_clicks old_base; //如果循环一次都没找到
//就把可以退出内存的进程赶出去
//再循环 ;
do{
hp = hole_head;
prevAim_ptr = NIL_HOLE;
Aim_ptr = NIL_HOLE; for(;hp != NIL_HOLE && hp->h_base < swap_base;
prevAim_ptr=hp,hp=hp->h_next)
{ //当从没记录过合适内存时
//把遇到的第一个合适节点保存在aim中
if(hp->h_len >= clicks && Aim_ptr == NIL_HOLE)
{
Aim_ptr=hp;
} //当找到一个比原来aim更合适的空间
//记录新的空间
if(hp->h_len >= clicks && hp->h_len > Aim_ptr->h_len)
{
//mark it down
Aim_ptr=hp;
} } //we found bigest
if(Aim_ptr!=NIL_HOLE)
{
old_base =Aim_ptr->h_base;
Aim_ptr->h_base+=clicks;
Aim_ptr->h_len-=clicks; /* Remember new high watermark of used memory. */
if(Aim_ptr->h_base > high_watermark)
high_watermark = Aim_ptr->h_base; return(old_base);
} }while(swap_out());
return(NO_MEM);
}
#endif
 最佳适应:
#ifdef USING_BEST_FIT
{
//先找到第一个满足要求的空洞,
//再以第一个为标准寻找最适合的空洞。
//当最适合的空洞完全吻合
//就直接划给它,当空洞较大时就切割。 //首先注册目标指针、目标前一个指针、头指针
//记录目标大小和目前最适合大小
register struct hole *hp;
register struct hole *prevAim_ptr;
register struct hole *Aim_ptr;
phys_clicks old_base; //如果循环一次都没找到
//就把可以退出内存的进程赶出去
//再循环
do{
hp = hole_head;
prevAim_ptr = NIL_HOLE;
Aim_ptr = NIL_HOLE; for(;hp != NIL_HOLE && hp->h_base < swap_base;
prevAim_ptr=hp,hp=hp->h_next)
{ //当从没记录过合适内存时
//把遇到的第一个合适节点保存在aim中
if(hp->h_len > clicks && Aim_ptr == NIL_HOLE)
{
Aim_ptr=hp;
} //当找到一个比原来aim更合适的空间
//记录新的空间
if(hp->h_len > clicks && hp->h_len < Aim_ptr->h_len)
{
//mark it down
Aim_ptr=hp;
}
}
//we found it
if(Aim_ptr != NIL_HOLE)
{
old_base = Aim_ptr->h_base; /* remember where it started */
Aim_ptr->h_base += clicks; /* bite off */
Aim_ptr->h_len -= clicks; /* ditto */ /* Remember new high watermark of used memory. */
if(Aim_ptr->h_base > high_watermark)
high_watermark = Aim_ptr->h_base; return(old_base);
} }while(swap_out());
return(NO_MEM);
}
#endif
 下一个最适合 :
#ifdef USING_NEXT_FIT //161 error
{
register struct hole *hp, *prev_ptr;
static register struct hole *start_ptr; phys_clicks old_base;
   start_ptr = hole_head;
   Prev_ptr=NIL_HOLE;
hp=start_ptr; do{ if(hp->h_next==start_ptr)
{
return(NO_MEM);
} while (hp->h_next != start_ptr && hp->h_base < swap_base){ if (hp->h_len >= clicks) {
/* We found a hole that is big enough. Use it. */
old_base = hp->h_base; /* remember where it started */
hp->h_base += clicks; /* bite a piece off */
hp->h_len -= clicks; /* ditto */ /* Delete the hole if used up completely. */
if (hp->h_len == ) del_slot(prev_ptr, hp); If((start_ptr=hp->h_next)==NIL_HOLE)
Start_ptr=hole_head; /* Return the start address of the acquired block. */
return(old_base);
} prev_ptr = hp;
hp = hp->h_next; If(hp==NIL_HOLE)
hp=hole_head;
} }while(swap_out());
}
#endif
FIRST_FIT
*===========================================================================*
* alloc_mem分配内存 *
*===========================================================================*/
PUBLIC phys_clicks alloc_mem(clicks)
phys_clicks clicks; /* amount of memory requested */
{
/* Allocate a block of memory from the free list using first fit. The block
* consists of a sequence of contiguous bytes, whose length in clicks is
* given by 'clicks'. A pointer to the block is returned. The block is
* always on a click boundary. This procedure is called when memory is
* needed for FORK or EXEC. Swap other processes out if needed.
*/
register struct hole *hp, *prev_ptr;
phys_clicks old_base; do {
prev_ptr = NIL_HOLE;
hp = hole_head;
while (hp != NIL_HOLE && hp->h_base < swap_base) {
if (hp->h_len >= clicks) {
/* We found a hole that is big enough. Use it. */
old_base = hp->h_base; /* remember where it started */
hp->h_base += clicks; /* bite a piece off */
hp->h_len -= clicks; /* ditto */ /* Remember new high watermark of used memory. */
if(hp->h_base > high_watermark)
high_watermark = hp->h_base; /* Delete the hole if used up completely. */
if (hp->h_len == ) del_slot(prev_ptr, hp); /* Return the start address of the acquired block. */
return(old_base);
} prev_ptr = hp;
hp = hp->h_next;
}
} while (swap_out()); /* try to swap some other process out */
return(NO_MEM);
}

MINI3内存分配算法的更多相关文章

  1. Java实现内存分配算法 FF(首次适应算法) BF(最佳适应算法)

    一.概述 因为这次os作业对用户在控制台的输入输出有要求,所以我花了挺多的代码来完善控制台的显示. MemoryAlgorithm类里只是和控制台输入输出有关的操作,而对内存的所有逻辑操作都是用Mem ...

  2. python的list内存分配算法

    前提:python为了提高效率会为list预先分配一定的内存空间供其使用,避免在每次append等操作都去申请内存,下面简单分析下list的内存分配算法,主要就是两段. 1.当没有元素时,newsiz ...

  3. Java实现操作系统中四种动态内存分配算法:BF+NF+WF+FF

    1 概述 本文是利用Java实现操作系统中的四种动态内存分配方式 ,分别是: BF NF WF FF 分两部分,第一部分是介绍四种分配方式的概念以及例子,第二部分是代码实现以及讲解. 2 四种分配方式 ...

  4. Buddy内存分配算法

    Buddy(伙伴的定义): 这里给出伙伴的概念,满足以下三个条件的称为伙伴:1)两个块大小相同:2)两个块地址连续:3)两个块必须是同一个大块中分离出来的: Buddy算法的优缺点: 1)尽管伙伴内存 ...

  5. c模拟内存分配算法(首次适应算法,最佳适应算法,最坏适应算法)

    #include<bits/stdc++.h> using namespace std; /*定义内存的大小为100*/ #define MEMSIZE 100 /*如果小于此值,将不再分 ...

  6. [图解tensorflow源码] [转载] tensorflow设备内存分配算法解析 (BFC算法)

    转载自 http://weibo.com/p/1001603980563068394770   @ICT_吴林阳 tensorflow设备内存管理模块实现了一个best-fit with coales ...

  7. TLFS 内存分配算法详解

    文章目录 1. DSA 背景介绍 1.1 mmheap 1.2 mmblk 2. TLFS 原理 2.1 存储结构 2.2 内存池初始化 2.3 free 2.4 malloc 参考资料 1. DSA ...

  8. 内存分配---FF、BF、WF三种算法

    动态分区分配是根据进程的实际需要,动态的为之分配内存空间.而在实现可变分区分配时,将涉及到分区分配中 所用的数据结构.分区分配算法和分区的分配与内存回收的过程. 分区分配中的数据结构:(1)描述空闲块 ...

  9. SQLite剖析之动态内存分配

    SQLite通过动态内存分配来获取各种对象(例如数据库连接和SQL预处理语句)所需内存.建立数据库文件的内存Cache.保存查询结果. 1.特性    SQLite内核和它的内存分配子系统提供以下特性 ...

随机推荐

  1. iOS Objective-C 中 bool 与 BOOL 的你不一定知道的事

    测试一下这段代码: - (void)test { NSLog(@"this is an attribut: %d", anAttribute); ; i < ; i++) { ...

  2. python--区分函数和方法, 反射

    1.  isinstance,   type,   issubclass isinstance(): 判断你给的xxx对象是否是xxxxx类型的,只支持向上判断 isinstance(object, ...

  3. GO学习笔记 - 没有参数的 return 语句返回各个返回变量的当前值,这种用法被称作“裸”返回。

    Go 的返回值可以被命名,并且就像在函数体开头声明的变量那样使用. 返回值的名称应当具有一定的意义,可以作为文档使用. 没有参数的 return 语句返回各个返回变量的当前值.这种用法被称作“裸”返回 ...

  4. linux中使用unzip命令中文乱码解决办法

    今天在使用unzip进行解压缩文件时,发现解压出的文件中文乱码,最后使用如下命令解决: unzip -O CP936 xxx.zip 特此记录一下.

  5. 2018-2019-2 20165219《网络对抗技术》Exp2 后门原理与实践

    2018-2019-2 20165219<网络对抗技术>Exp2 后门原理与实践 实验内容 使用netcat获取主机操作Shell,cron启动 使用Socat获取主机操作Shell, 任 ...

  6. “全栈2019”Java异常第四章:catch代码块作用域详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java异 ...

  7. kali linux之无线渗透(续)

    Airolib 设计用于存储ESSID和密码列表,计算生成不变的PMK(计算资源消耗型) PMK在破解阶段被用于计算PTK(速度快,计算资源要求少) 通过完整性摘要值破解密码SQLite3数据库存储数 ...

  8. Linux 环境变量加强

    Linux 环境变量加强 # 前言 今天,主要是之前搭建 GO 环境包的使用发现自己对 Linux 环境变量还不是很熟悉. 遇到环境变量的问题还是会有些懵逼.所以,今天写点Linux 环境变量的文章, ...

  9. collections 模块常用方法学习

    前情提要: 1:模块介绍 个人认为就是 python自带的骚操作模块.如果基础能力够给力的话,完全用不到 个人认为解析式才是装逼神奇,用模块的都是伪娘 2:deque   双向列表 from coll ...

  10. [转]CocoaPods安装和使用教程

    [转载自:http://code4app.com/article/cocoapods-install-usage] 目录 CocoaPods是什么? 如何下载和安装CocoaPods? 如何使用Coc ...