Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph
G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'),
with the following properties:

1. V' = V.

2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted,
connected, undirected graph G = (V, E). The minimum spanning tree T =
(V, E') of G is the spanning tree that has the smallest total cost. The
total cost of T means the sum of the weights on all the edges in E'.

Input

The
first line contains a single integer t (1 <= t <= 20), the number
of test cases. Each case represents a graph. It begins with a line
containing two integers n and m (1 <= n <= 100), the number of
nodes and edges. Each of the following m lines contains a triple (xi,
yi, wi), indicating that xi and yi are connected by an edge with weight =
wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

题意:问最小生成树是否唯一。

分析:求次小生成树,推断次小生成树和最小生成树是否相等。

求次小生成树的步骤:

(1)先用Prime求出最小生成树MST,在Prime的同一时候用一个矩阵mmax[ ][ ]记录在MST中连接随意两点u,v的唯一路径中权

值最大的那条边的权值。做法:Prime是每次添加一个节点t。用该点新加入MST的边与它前一个加入MST的点的mmax的值做比较。

(2)枚举最小生成树以外的边,并删除该边所在环上权值最大的边。

(3)取得的全部生成树中权值最小的一棵即为所求。

算法的时间复杂度为O(n^2)。

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define maxn 111
#define inf 0x3f3f3f3f int map[maxn][maxn],mmax[maxn][maxn];//map邻接矩阵存图,mmax示最小生成树中i到j的最大边权
bool used[maxn][maxn];//判断该边是否加入最小生成树
int pre[maxn],dis[maxn];//pre用于mmax的构建,装前一个放入MST的结点,dis用于构建MST void init(int n)
{
for (int i=;i<=n;i++)//图初始化
{
for (int j=;j<=n;j++)
{
if (i==j)
{
map[i][j]=;
}
else
{
map[i][j]=inf;
}
}
}
} void read(int m)
{
int u,v,w;
for (int i=;i<m;i++)//读入图
{
scanf("%d%d%d",&u,&v,&w);
map[u][v]=map[v][u]=w;
}
}
int prime(int n)//构建MST
{
int ans=;
bool vis[maxn];
memset(vis,false,sizeof(vis));
memset(used,false,sizeof(used));
memset(mmax,,sizeof(mmax));
for (int i=;i<=n;i++)
{
dis[i]=map[][i];
pre[i]=;//1点为第一个放入MST的点,先设为所有点的前驱结点
}
pre[]=;
dis[]=;
vis[]=true;
for (int i=;i<=n;i++)
{
int min_dis=inf,k;
for (int j=;j<=n;j++)
{
if (vis[j]==&&min_dis>dis[j])
{
min_dis=dis[j];
k=j;
}
}
if (min_dis==inf)//如果不存在最小生成树
{
return -;
}
ans+=min_dis;
vis[k]=true;
used[k][pre[k]]=used[pre[k]][k]=true;//标记为放入MST的点
for (int j=;j<=n;j++)
{
if (vis[j])
{
mmax[j][k]=mmax[k][j]=max(mmax[j][pre[k]],dis[k]);//最小生成树环的最大边
}
if (!vis[j]&&dis[j]>map[k][j])
{
dis[j]=map[k][j];
pre[j]=k;
}
}
}
return ans;//最小生成树的权值之和
}
int smst(int n,int min_ans)//min_ans 是最小生成树的权值和
{
int ans=inf;
for (int i=;i<=n;i++)//枚举最小生成树之外的边
{
for (int j=i+;j<=n;j++)
{
if (map[i][j]!=inf&&!used[i][j])
{
ans=min(ans,min_ans+map[i][j]-mmax[i][j]);//该边次小MST的权值为MST加上该边再减去该边所在环的最大MST边
}
}
}
if (ans==inf)
{
return -;
}
return ans;
}
void solve(int n)
{
int ans=prime(n);
if (ans==-)
{
puts("Not Unique!");
return;
}
if (smst(n,ans)==ans)//次小MST权值等于MST说明MST不唯一
{
printf("Not Unique!\n");
}
else
{
printf("%d\n",ans);
}
}
int main()
{
int t,n,m; scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&m);
init(n);
read(m);
solve(n);
} return ;
}

POJ_1679_The Unique MST(次小生成树)的更多相关文章

  1. POJ_1679_The Unique MST(次小生成树模板)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23942   Accepted: 8492 D ...

  2. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  3. POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)

    题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. De ...

  4. POJ1679 The Unique MST —— 次小生成树

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  5. POJ-1679 The Unique MST,次小生成树模板题

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K       Description Given a connected undirec ...

  6. POJ 1679 The Unique MST (次小生成树)

    题目链接:http://poj.org/problem?id=1679 有t组数据,给你n个点,m条边,求是否存在相同权值的最小生成树(次小生成树的权值大小等于最小生成树). 先求出最小生成树的大小, ...

  7. poj1679The Unique MST(次小生成树模板)

    次小生成树模板,别忘了判定不存在最小生成树的情况 #include <iostream> #include <cstdio> #include <cstring> ...

  8. POJ 1679 The Unique MST (次小生成树kruskal算法)

    The Unique MST 时间限制: 10 Sec  内存限制: 128 MB提交: 25  解决: 10[提交][状态][讨论版] 题目描述 Given a connected undirect ...

  9. poj 1679 The Unique MST (次小生成树(sec_mst)【kruskal】)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 35999   Accepted: 13145 ...

随机推荐

  1. Office Online Server 2016 部署和配置

    Office Online Server 2016 部署和配置https://wenku.baidu.com/view/65faf8de846a561252d380eb6294dd88d1d23d45 ...

  2. Handlebars.js中集合(list)通过中括号的方式取值

    有这么一个需求,在一个table中,tr是通过each取值,取出的值要与table标题相对应,如何实现?例如: <table> <thead> <tr> {{#ea ...

  3. 沉淀再出发:spring boot的理解

    沉淀再出发:spring boot的理解 一.前言 关于spring boot,我们肯定听过了很多遍了,其实最本质的东西就是COC(convention over configuration),将各种 ...

  4. [Vijos 1768] 顺序对的值

    顺序对的值 描述 给定一个序列a,a中任意两个元素都不等.如果i<j,且a[i]<a[j],则我们称a[i],a[j]为一个顺序对,这个顺序对的值是指a[i+1],a[i+2]…….a[j ...

  5. mysql install steps

    the official documents for mysql 5.6 install key steps: # Preconfiguration setup shell> groupadd ...

  6. 剖析php脚本的超时机制

    在做php开发的时候,经常会设置max_input_time.max_execution_time,用来控制脚本的超时时间.但却从来没有思考过背后的原理. 趁着这两天有空,研究一下这个问题.文中源码取 ...

  7. Oracle密码过期the password has expired解决办法

    oracle 出现the password has expired这个问题,今天突然发现项目访问不了,一查发现用不了,也登不进去, 这个问题由是Oracle11g密码过期的原因导致的 调试Web项目的 ...

  8. 【模板】Dijkstra总结

    Dijkstra算法使用于跑最短路的算法. 算法思想 假定图是不带负权的有向图或无向图,采用贪心策略,每次扩展一个距离为最短的点,在以这个点为中间点,更新其他的所有点的距离.当所有边权都为正时,由于不 ...

  9. No.1 - 制作一个简单的菜单动画效果---百度IFE

    最近比较闲,在家做点训练 http://ife.baidu.com/course/detail/id/18?t=1527144851578#learn CSS3新特性,兼容性,兼容方法总结 https ...

  10. shell脚本执行

    方法一:切换到shell脚本所在的目录执行shell脚本: cd /data/shell ./hello.sh ./的意思是说在当前的工作目录下执行hello.sh.如果不加上./,bash可能会响应 ...