拉普拉斯变换的公式

傅里叶变换公式

拉普拉斯变换是将时域映射到s plane上,而傅里叶变换实际是将时域 映射在s-plane的虚轴上,

傅里叶变换可以看作拉普拉斯变换  的一种特例

1.推导傅里叶变换

将其发展延伸,构造出了其他形式的积分变换:
 

 
从数学的角度理解积分变换就是通过积分运算,把一个函数变成另一个函数。也可以理解成是算内积,然后就变成一个函数向另一个函数的投影:
K(s,t)积分变换的核(Kernel)。当选取不同的积分域和变换核时,就得到不同名称的积分变换。学术一点的说法是:向核空间投影,将原问题转化到核空间。
所谓核空间,就是这个空间里面装的是核函数。下表列出常见的变换及其核函数:

当然,选取什么样的核主要看你面对的问题有什么特征。不同问题的特征不同,就会对应特定的核函数。把核函数作为基函数。将现在的坐标投影到核空间里面去,问题就会得到简化。
之所以叫核,是因为这是最核心的地方。为什么其他变换你都没怎么听说过而只熟悉傅里叶变换和拉普拉斯变换呢?因为复指数信号才是描述这个世界的特征函数

傅里叶变换 VS 拉普拉斯变换的更多相关文章

  1. 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换

    傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络       傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...

  2. 形象地展示信号与系统中的一些细节和原理——卷积、复数、傅里叶变换、拉普拉斯变换、零极图唯一确定因果LTI系统

    看懂本文需要读者具备一定的微积分基础.至少开始学信号与系统了本文主要讲解欧拉公式.傅里叶变换的频率轴的负半轴的意义.傅里叶变换的缺陷.为什么因果LTI系统可以被零极图几乎唯一确定等等容易被初学者忽略但 ...

  3. 【转】傅里叶变换 拉普拉斯变 z变换 DFT DCT意义

    傅里叶变换在物理学.数论.组合数学.信号处理.概率论.统计学.密码学.声学.光学.海洋学.结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量). ...

  4. OpenCV——Sobel和拉普拉斯变换

    Sobel变换和拉普拉斯变换都是高通滤波器. 什么是高通滤波器呢?就是保留图像的高频分量(变化剧烈的部分),抑制图像的低频分量(变化缓慢的部分).而图像变化剧烈的部分,往往反应的就是图像的边沿信息了. ...

  5. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  6. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  7. 利用matlab写一个简单的拉普拉斯变换提取图像边缘

    可以证明,最简单的各向同性微分算子是拉普拉斯算子.一个二维图像函数 f(x,y) 的拉普拉斯算子定义为 ​ 其中,在 x 方向可近似为 ​ 同理,在 y 方向上可近似为 ​ 于是 我们得到满足以上三个 ...

  8. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  9. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

随机推荐

  1. UIView的背景渐变

    //绘制背景渐变 /* CGCradientCreateWithColorComponents函数需要四个参数: 色彩空间:(Color Space)这是一个色彩范围的容器,类型必须是CGColorS ...

  2. 如果返回结构体类型变量(named return value optimisation,NRVO)

    貌似这是一个非常愚蠢的问题,因为对于具有良好素质的程序员而言,在C中函数返回类型为结构体类型是不是有点不合格,干嘛不用指针做传入传出呢? 测试环境:Linux IOS 3.2.0-45-generic ...

  3. Socket.BeginConnect 方法

    Socket.BeginConnect 方法 (IPAddress, Int32, AsyncCallback, Object) 开始一个对远程主机连接的异步请求. 主机由 IPAddress 和端口 ...

  4. linux,crontab定时任务中为脚本指定使用参数,crontab的脚本中是否可以带参数

    需求描述: 今天在写脚本的时候,脚本的运行需要给出几个参数,那么就考虑 在crontab写定时任务的时候,是否也是能够在脚本中,增加参数呢, 因为以前没有这么用过,所以呢,就进行一次测试. 测试过程: ...

  5. RedisTemplate实现事物问题剖析和解决

    一.问题描述 Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,Redis对事物支持不会很复杂,当一个客服端连接Redis服务时,发出了MULTI命令时,这个连接会进入事物,在执行MU ...

  6. 第五章 面向方面编程___AOP入门

    上一篇讲了 AOP 和 OOP 的区别,这一次我们开始入门 AOP .实现面向方面编程的技术,主要分为两大类: 一是 采用动态代理技术,利用截取消息的方式,对该消息进行装饰,以取代原有对象行为的执行: ...

  7. python2.0_s12_day15_django框架的基本使用

    day15本节内容介绍 上节作业讲解(让行进入编辑模式,批量编辑) CSS之特殊内容补充 CSS内容补充之伪类 伪类实例:返回顶部终极版 CSS内容补充之无法被覆盖 jQuery插件 jQuery插件 ...

  8. sql 链接符 ||

  9. hex()

    hex() 用于将十进制数字转换成十六进制 In [1]: hex(10) Out[1]: '0xa' In [2]: hex(11) Out[2]: '0xb'

  10. Xdebug安装与使用

    为什么需要Debugger? 很多PHP程序员调试使用echo.print_r().var_dump().printf()等,其实对 于有较丰富开发经验的程序员来说这些也已经足够了,他们往往可以在程序 ...