拉普拉斯变换的公式

傅里叶变换公式

拉普拉斯变换是将时域映射到s plane上,而傅里叶变换实际是将时域 映射在s-plane的虚轴上,

傅里叶变换可以看作拉普拉斯变换  的一种特例

1.推导傅里叶变换

将其发展延伸,构造出了其他形式的积分变换:
 

 
从数学的角度理解积分变换就是通过积分运算,把一个函数变成另一个函数。也可以理解成是算内积,然后就变成一个函数向另一个函数的投影:
K(s,t)积分变换的核(Kernel)。当选取不同的积分域和变换核时,就得到不同名称的积分变换。学术一点的说法是:向核空间投影,将原问题转化到核空间。
所谓核空间,就是这个空间里面装的是核函数。下表列出常见的变换及其核函数:

当然,选取什么样的核主要看你面对的问题有什么特征。不同问题的特征不同,就会对应特定的核函数。把核函数作为基函数。将现在的坐标投影到核空间里面去,问题就会得到简化。
之所以叫核,是因为这是最核心的地方。为什么其他变换你都没怎么听说过而只熟悉傅里叶变换和拉普拉斯变换呢?因为复指数信号才是描述这个世界的特征函数

傅里叶变换 VS 拉普拉斯变换的更多相关文章

  1. 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换

    傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络       傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...

  2. 形象地展示信号与系统中的一些细节和原理——卷积、复数、傅里叶变换、拉普拉斯变换、零极图唯一确定因果LTI系统

    看懂本文需要读者具备一定的微积分基础.至少开始学信号与系统了本文主要讲解欧拉公式.傅里叶变换的频率轴的负半轴的意义.傅里叶变换的缺陷.为什么因果LTI系统可以被零极图几乎唯一确定等等容易被初学者忽略但 ...

  3. 【转】傅里叶变换 拉普拉斯变 z变换 DFT DCT意义

    傅里叶变换在物理学.数论.组合数学.信号处理.概率论.统计学.密码学.声学.光学.海洋学.结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量). ...

  4. OpenCV——Sobel和拉普拉斯变换

    Sobel变换和拉普拉斯变换都是高通滤波器. 什么是高通滤波器呢?就是保留图像的高频分量(变化剧烈的部分),抑制图像的低频分量(变化缓慢的部分).而图像变化剧烈的部分,往往反应的就是图像的边沿信息了. ...

  5. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  6. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  7. 利用matlab写一个简单的拉普拉斯变换提取图像边缘

    可以证明,最简单的各向同性微分算子是拉普拉斯算子.一个二维图像函数 f(x,y) 的拉普拉斯算子定义为 ​ 其中,在 x 方向可近似为 ​ 同理,在 y 方向上可近似为 ​ 于是 我们得到满足以上三个 ...

  8. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  9. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

随机推荐

  1. YII2中的Html助手和Request组件

    Html助手 1 .在@app\views\test的index.php中: <?php //引入命名空间 use yii\helpers\Html; ?> <?php //[一]表 ...

  2. Oracle查询优化--排序

    --普通排序 SELECT * FROM emp ORDER BY sal DESC; --使用列序排序 DESC; --组合排序 DESC; --translate函数,参数分别用A.B.C表示 S ...

  3. Oracle 11gR2 11.2.0.1 ( 11.2.0.1的BUG?):ohasd不能正常启动:ioctl操作:npohasd的问题:【chmod a+wr /var/tmp/.oracle/npohasd】

    问题1:执行安装,编译成功后,执行asmca时,失败,无法成功创建后台相关服务 问题2:os系统重启后,ohasd无法正常启动,css服务失败 原因:11.2.0.1的BUG:/var/tmp/.or ...

  4. Ubuntu 安装 Kubernetes

    Kubernetes是Google开源的容器集群管理系统.它构建于docker技术之上,为容器化的应用提供资源调度.部署运行.服务发现.扩容缩容等整一套功能,本质上可看作是基于容器技术的mini-Pa ...

  5. 拼凑sql语句另外一个方法

    经常拼凑sql语句,经常是手工拼写 也可以利用字典另外一个模式拼凑 这里采用的是Dictionary中的Aggregate方法. 代码如下: static void Main(string[] arg ...

  6. mysql表无权限访问

    当网页出现以上问题时的解决方法: 今天在两台服务器间转移网站,最后把域名解释设置好后等待...然后CMD查看DNS解释情况..解释成功-输入网址-却出现如上信息,首先用#ls -l查看mysql下的v ...

  7. linux环境中查看主机型号(机器型号)

    需求说明: 今天一同事让统计测试环境主机型号,在此记录下. 操作过程: 1.通过dmidecode工具查询,产品型号(机器型号) [root@redhat6 ~]# dmidecode | grep ...

  8. 赠 看穿一切的var_dump

    看穿一切的var_dump同学让我送他一首诗,于是作诗如下: 看穿一切被看穿,莫让年少酿毒烟.骄心当制能补拙,拨开云雾见上仙!

  9. 基于51的串行通讯原理及协议详解(uart)

    串行与并行通讯方式并行:控制简单,传输速度快.线多,长距离成本较高且同时接受困难.串行:将数据字节分成一位一位的行驶在一条传输线上进行传输.如图:   同步与异步串行通讯方式同步串行通讯方式:同步通讯 ...

  10. OpenGL超级宝典总结(二)2D/3D笛卡尔坐标、坐标裁剪、纹理坐标、MVP转换等概念

    如果你想把图形渲染在正确的位置上,那么坐标的设置就很重要了.在OpenGL中,与坐标相关的主要有笛卡尔坐标.坐标裁剪.纹理坐标.MVP(Model View Projection)转换. 1.笛卡尔坐 ...