原题请见《左偏树的特点及其应用》BY 广东省中山市第一中学 黄源河

luogu

题意

给出序列\(a[1...n]\),要求构造一个不下降序列\(b[1...n]\)使得\(\sum_{i=1}^{n}|a_i-b_i|\)最小。

sol

首先很自然地能够想到,构造出来的序列\(b[1...n]\)一定可以划分成\(m\)段\((1\le{m}\le{n})\),每段内数字全部相同。

我们把每一段的数字提取出来分别为\(c[1...m]\)。

如果对每一段的\(c[i]\)都取最优的话,那么一定是去这一段中\(a[i]\)的中位数。

但是取中位数可能会导致序列\(c\)不满足非降,这个时候就需要把相邻的两个不合法的段合并成一段。

所以就需要维护中位数。

左偏树。对于一个长度为\(x\)的段,左偏树中保存这一段中前\(\lfloor\frac{x+1}{2}\rfloor\)小的数字,易知这些数里面最大的那个就是中位数,合并的时候直接合并两棵左偏树。

因为\(\lfloor\frac{x+1}{2}\rfloor+\lfloor\frac{y+1}{2}\rfloor=\lfloor\frac{x+y+1}{2}\rfloor-1\)当且仅当\(x,y\)均为奇数,所以这种情况要弹掉堆顶元素。

复杂度\(O(n\log{n})\)

注:洛谷的题目是要求构造一个递增序列,可以采用减下标的方法,即输入时把每个数都减去对应下表,输出时再加上,这样就可以完成不下降序列和递增序列的转换。

code

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
inline int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 1e6+5;
int n,key[N],ls[N],rs[N],dis[N],S[N],ed[N],top;
ll ans;
int merge(int A,int B)
{
if (!A||!B) return A|B;
if (key[A]<key[B]) swap(A,B);
rs[A]=merge(rs[A],B);
if (dis[ls[A]]<dis[rs[A]]) swap(ls[A],rs[A]);
dis[A]=dis[rs[A]]+1;
return A;
}
int main()
{
n=gi();
for (int i=1;i<=n;++i) key[i]=gi();
for (int i=1;i<=n;++i)
{
++top;S[top]=i;ed[top]=i;
while (top>1&&key[S[top]]<key[S[top-1]])
{
--top;
S[top]=merge(S[top],S[top+1]);
if (((ed[top+1]-ed[top])&1)&&((ed[top]-ed[top-1])&1))
S[top]=merge(ls[S[top]],rs[S[top]]);
ed[top]=ed[top+1];
}
}
for (int i=1;i<=top;++i)
for (int j=ed[i-1]+1;j<=ed[i];++j)
ans+=abs(key[j]-key[S[i]]);
printf("%lld\n",ans);
return 0;
}

强行再贴一个洛谷上那道题的代码

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
inline int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 1e6+5;
int n,key[N],ls[N],rs[N],dis[N],S[N],ed[N],top;
ll ans;
int merge(int A,int B)
{
if (!A||!B) return A|B;
if (key[A]<key[B]) swap(A,B);
rs[A]=merge(rs[A],B);
if (dis[ls[A]]<dis[rs[A]]) swap(ls[A],rs[A]);
dis[A]=dis[rs[A]]+1;
return A;
}
int main()
{
n=gi();
for (int i=1;i<=n;++i) key[i]=gi()-i;
for (int i=1;i<=n;++i)
{
++top;S[top]=i;ed[top]=i;
while (top>1&&key[S[top]]<key[S[top-1]])
{
--top;
S[top]=merge(S[top],S[top+1]);
if (((ed[top+1]-ed[top])&1)&&((ed[top]-ed[top-1])&1))
S[top]=merge(ls[S[top]],rs[S[top]]);
ed[top]=ed[top+1];
}
}
for (int i=1;i<=top;++i)
for (int j=ed[i-1]+1;j<=ed[i];++j)
ans+=abs(key[j]-key[S[i]]);
printf("%lld\n",ans);
for (int i=1;i<=top;++i)
for (int j=ed[i-1]+1;j<=ed[i];++j)
printf("%d ",key[S[i]]+j);
puts("");return 0;
}

[Luogu4331][Baltic2004]数字序列的更多相关文章

  1. [Baltic2004]数字序列

    原题请见<左偏树的特点及其应用>BY 广东省中山市第一中学 黄源河 题意 给出序列\(a[1...n]\),要求构造序列\(b[1...n]\)使得\(\sum_{i=1}^{n}|a_i ...

  2. 找出数组中最长的连续数字序列(JavaScript实现)

    原始题目: 给定一个无序的整数序列, 找最长的连续数字序列. 例如: 给定[100, 4, 200, 1, 3, 2], 最长的连续数字序列是[1, 2, 3, 4]. 小菜给出的解法: functi ...

  3. 九度OJ 1544 数字序列区间最小值

    题目地址:http://ac.jobdu.com/problem.php?pid=1544 题目描述: 给定一个数字序列,查询任意给定区间内数字的最小值. 输入: 输入包含多组测试用例,每组测试用例的 ...

  4. 【BZOJ】【1049】【HAOI2006】数字序列

    DP 第一问比较水……a[i]-=i 以后就变成最长不下降子序列问题了,第二问这个结论好神奇,考试的时候怎么破?大胆猜想,不用证明?TAT 题解:http://pan.baidu.com/share/ ...

  5. kaggle之数字序列预测

    数字序列预测 Github地址 Kaggle地址 # -*- coding: UTF-8 -*- %matplotlib inline import pandas as pd import strin ...

  6. string 数字序列大小比较

    string 数字序列大小比较 string.compare string a = "022"; string b="1"; 比较结果 '022' < ' ...

  7. codevs 2622 数字序列

    2622 数字序列 提交地址:http://codevs.cn/problem/2622/  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 黄金 Gold     题目描述 De ...

  8. Shell生成数字序列

    转自http://kodango.com/generate-number-sequence-in-shell Shell里怎么输出指定的数字序列: for i in {1..5}; do echo $ ...

  9. 《剑指offer》第四十四题(数字序列中某一位的数字)

    // 面试题44:数字序列中某一位的数字 // 题目:数字以0123456789101112131415…的格式序列化到一个字符序列中.在这 // 个序列中,第5位(从0开始计数)是5,第13位是1, ...

随机推荐

  1. Python中tab键自动补全功能的配置

    新手学习Python的时候,如何没有tab键补全功能,我感觉那将是一个噩梦,对于我们这种菜鸟来说,刚接触python,对一切都不了解,还好有前辈们的指导,学习一下,并记录下来,还没有学习这个功能小伙伴 ...

  2. git分支合并的冲突解决方法

    本次学习的是解决不同分支提交的内容不同导致合并冲突,及怎样解决冲突.       基本命令: git log --graph查看分支合并图       具体步骤: 新建分支branch1,并修改rea ...

  3. jQuery为动态生成的select元素添加事件的方法

    项目中需要在点击按钮时动态生成select元素,为防止每次点击按钮时从服务器端获取数据(因为数据都是相同的),可以这样写代码 1.首先定义全局js变量 var strVoucherGroupSelec ...

  4. 移动端web开发技巧 -- 转载

    META相关 1. 添加到主屏后的标题(IOS)<meta name="apple-mobile-web-app-title" content="标题"& ...

  5. go语言的time.Sleep

    首先:time.sleep单位为:1ns (纳秒) 转换单位: 1纳秒 =1000皮秒      1纳秒 =0.001 微秒      1纳秒 =0.000 001毫秒        1纳秒 =0.0 ...

  6. 第四章 Spring.Net 如何管理您的类___对象的手动装配

    前面我们知道了什么是对象,什么是对象工厂,什么是应用程序上下文.这一次我们来看一下对象的装配. Spring.Net 中有多种装配对象的方式,装配这个词可能比较学术化,我们可以理解为对象的创建. Sp ...

  7. POJ 1252 Euro Efficiency(完全背包, 找零问题, 二次DP)

    Description On January 1st 2002, The Netherlands, and several other European countries abandoned the ...

  8. 使用Git Hooks实现开发部署任务自动化

    前言 版本控制,这是现代软件开发的核心需求之一.有了它,软件项目可以安全的跟踪代码变更并执行回溯.完整性检查.协同开发等多种操作.在各种版本控制软件中,git是近年来最流行的软件之一,它的去中心化架构 ...

  9. Maven(二)-- 搭建私服,上传jar

    一.在setting中配置 私服的镜像,在mirrors标签中加上: <!--第一步 配置私服的镜像--> <mirror> <!--此处配置所有的构建均从私有仓库中下载 ...

  10. orcale 闪回操作 已提交的修改 给还原

    delete from conf_ty_parser_title; INSERT INTO conf_ty_parser_title ( SELECT * FROM conf_ty_parser_ti ...