P2149 [SDOI2009]Elaxia的路线
题目描述
最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间。
Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。
现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。
输入输出格式
输入格式:
第一行:两个整数N和M(含义如题目描述)。
第二行:四个整数x1、y1、x2、y2(1 ≤ x1 ≤ N,1 ≤ y1 ≤ N,1 ≤ x2 ≤ N,1 ≤ y2 ≤ N),分别表示Elaxia的宿舍和实验室及w**的宿舍和实验室的标号(两对点分别 x1,y1和x2,y2)。
接下来M行:每行三个整数,u、v、l(1 ≤ u ≤ N,1 ≤ v ≤ N,1 ≤ l ≤ 10000),表 u和v之间有一条路,经过这条路所需要的时间为l。
输出格式:
一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)
输入输出样例
说明
对于30%的数据,N ≤ 100;
对于60%的数据,N ≤ 1000;
对于100%的数据,N ≤ 1500,输入数据保证没有重边和自环。
可证最优解一定是连续的一段,因为两点间的最短路是一定的,所以最优解如果有一段不连续的话两个人走的不相同的两段路的长度也一定相同,也就是说其实可以走一起走一样的路而不用分开走以获得更优解
所以要找的就是同时在两条最短路上的最长的连续重合路径
思路:找出每一条同时在两条最短路上的边,最长的连续段即为所求。
方法:
1.从x1,x2,y1,y2跑4遍spfa
2.穷举每一条边,如果这条边边长+边的一边到x1的距离+另一边到y1的距离=x1到y1的距离 同时x2到y2也符合上述条件则此边在两条最短路上,把此边加入集合
3.重新建图 注意这次要建单向边!! 也就是说只有当一条边在x1到y1的路径上而不是在y1到x1的路径上时才把此边加入
4.从新建的图上找出最长的连续段即为所求
#include<iostream>
#include<stdio.h>
#include<queue>
#include<cstring>
using namespace std;
queue<int> q; int i,m,n,j,k,a[1501][1501],ver[2500001],nex[2500001],head[100001],x[2],y[2],u,v,l,edge[2500001];
int maxx,cnt,fr[2500001],mm[1501];
bool b[1501][1501]; inline int getint()
{
char ch;
int res=0;
while(ch=getchar(),ch<'0'||ch>'9');
res=ch-48;
while(ch=getchar(),ch>='0'&&ch<='9')
res=(res<<3)+(res<<1)+ch-48;
return res;
} void add(int x,int y,int z)
{
cnt+=1;
ver[cnt]=y;
nex[cnt]=head[x];
head[x]=cnt;
edge[cnt]=z;
fr[cnt]=x;
} int spfa(int x)
{
while(q.size()) q.pop();
q.push(x);
a[x][x]=0;
while(q.size())
{
int t=q.front();
q.pop();
for(int i=head[t];i;i=nex[i])
{
int r=ver[i];
if(a[x][r]>a[x][t]+edge[i])
{
a[x][r]=a[x][t]+edge[i];
q.push(r);
}
}
}
} void tp(int x,int f)
{
for(int i=head[x];i;i=nex[i])
{
int t=ver[i];
if(t==f) continue;
if(mm[x]+edge[i]>mm[t])
{
mm[t]=mm[x]+edge[i];
maxx=max(maxx,mm[t]);
tp(t,x);
}
}
} int main()
{
n=getint(); m=getint(); x[0]=getint(); y[0]=getint(); x[1]=getint(); y[1]=getint();
for(i=1;i<=m;i++)
{
u=getint(); v=getint(); l=getint();
add(u,v,l);
add(v,u,l);
}
memset(a,0x3f,sizeof(a));
spfa(x[0]); spfa(x[1]); spfa(y[0]); spfa(y[1]);
k=cnt; cnt=0; memset(head,0,sizeof(head));
for(i=1;i<=k;i++)
{
if((a[x[0]][fr[i]]+edge[i]+a[y[0]][ver[i]]==a[x[0]][y[0]])&&(a[x[1]][fr[i]]+edge[i]+a[y[1]][ver[i]]==a[x[1]][y[1]]))
add(fr[i],ver[i],edge[i]);
else if((a[x[0]][fr[i]]+edge[i]+a[y[0]][ver[i]]==a[x[0]][y[0]])&&(a[x[1]][ver[i]]+edge[i]+a[y[1]][fr[i]]==a[x[1]][y[1]]))
add(fr[i],ver[i],edge[i]);
}
for(i=1;i<=cnt;i++) if(mm[fr[i]]==0) tp(fr[i],0);
printf("%d",maxx);
}
ps.依然坚持认为我写的跑n遍dijkstra的n2logn的时间复杂度挺好的(我才不会承认它确实只能得28分QAQ
P2149 [SDOI2009]Elaxia的路线的更多相关文章
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- 洛谷——P2149 [SDOI2009]Elaxia的路线
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每 ...
- Luogu P2149 [SDOI2009]Elaxia的路线(最短路+记忆化搜索)
P2149 [SDOI2009]Elaxia的路线 题意 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...
- 洛谷—— P2149 [SDOI2009]Elaxia的路线
https://www.luogu.org/problem/show?pid=2149 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两 ...
- P2149 [SDOI2009]Elaxia的路线[最长公共路径]
题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在 ...
- Luogu P2149 [SDOI2009]Elaxia的路线 | 图论
题目链接 题解: 题面中给了最简洁清晰的题目描述:"求无向图中,两对点间最短路的最长公共路径". 对于这个问题我们可以先考虑图中的哪些边对这两对点的最短路产生了贡献. 比如说下面这 ...
- BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )
找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线(最短路)
[BZOJ1880][Sdoi2009]Elaxia的路线(最短路) 题面 BZOJ 洛谷 题解 假装我们知道了任意两点间的最短路,那么我们怎么求解答案呢? 不难发现公共路径一定是一段连续的路径(如果 ...
随机推荐
- JavaScript三大对象详细解说
Js三大对象 一 浏览器对象 浏览器窗口.文档document.URL地址等 常用的浏览器对象: 浏览器对象的分层结构 Window对象 (1) 属性 名称 说明 document 表示给定浏览器窗口 ...
- 五、standalone运行模式
在上文中我们知道spark的集群主要有三种运行模式standalone.yarn.mesos,其中常被使用的是standalone和yarn,本文了解一下什么是standalone运行模式,它的运行流 ...
- java核心技术-NIO
1.reactor(反应器)模式 使用单线程模拟多线程,提高资源利用率和程序的效率,增加系统吞吐量.下面例子比较形象的说明了什么是反应器模式: 一个老板经营一个饭店, 传统模式 - 来一个客人安排一个 ...
- 全面了解HTTP和HTTPS
序言 Http和Https属于计算机网络范畴,但作为开发人员,不管是后台开发或是前台开发,都很有必要掌握它们. 在学习Http和Https的过程中,主要是参考了阮一峰老师的博客,讲的很全面,并且通俗易 ...
- 一款软件同时管理MySQL,MongoDB数据库
互联网应用开发日新月异,去年分布式应用都还大量使用springmvc+ zookeeper +dubbo,今年就被spring boot ,spring cloud微服务架构替换了,技术的更新换代太快 ...
- drupal7 获取网站名称
$site_name=variable_get('site_name', 'Drupal');
- Nodejs + express + ejs 之服务器demo
var http=require("http"); var express=require("express"); var fs = require(" ...
- Spring mvc与Struts2的比较
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同. 2. 性能:spring会稍微比struts快.spring mvc是基于方法的设 ...
- windows7x64系统中配置mysql5.7.17为本地开发环境(win2008类似)
1. 下载mysql压缩包mysql-5.7.17-winx64.ziphttps://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7.17-winx64.z ...
- 四、angularjs 如何在页面没有登录的情况下阻止用户通过更改url进入页面--$stateChangeStart
有时候用户没有登录或者在某些情况下你是不希望用户进入页面,但是angular的路由机制可以让用户直接通过更改Url进入页面,如何处理这一问题呢? ——监控路由转换机制 $stateChangeStar ...