1. K-近邻算法

 # coding=utf-8
from numpy import *
import operator def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels def classify(inX,dataSet,labels,k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX,(dataSetSize,1))-dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
# 返回值所在的索引
sortedDistIndices = distances.argsort()
classCount={}
for i in range(k):
# 根据索引获取其对应的类别标签
voteIlabel = labels[sortedDistIndices[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
print classCount
sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0] def main():
(group,labels)=createDataSet()
print classify([0.8,1.5],group,labels,3) if __name__=="__main__":
main()

k-近邻算法的整体流程为:

  (1) 计算已知类别数据集中的点与当前点之间的距离;
  (2) 按照距离递增次序排序;
  (3) 选取与当前点距离最小的k个点;
  (4) 确定前k个点所在类别的出现频率;
  (5) 返回前k个点出现频率最高的类别作为当前点的预测分类

  classify() 函数有 4 个输人参数 : 用于分类的输入向量inX,输入的训练样本集dataSet,标签向量labels,最后的参数k表示用于选择最近邻近的数目,其中输入向量的元素数目和矩阵dataSet的行数相同,首先计算向量和矩阵向量元素之间的距离,然后按照从小到大的顺序对结果进行排序,确定前 k 个距离最小元素所在的主要分类(输入参数k总正整数);最后,将classCount字典分解为元组列表,然后使用程序第二行导入运算符模块的itemgetter方法 ,按照classCount字典的第二个元素的次序对元组进行排序。此处的排序为逆序,即按照从最大到最小次序排序,最后返回发生频率最高的元素标签,即就是输入向量所属分类。

  最近正在看《机器学习实战》,顺便汇总一下其中的小例子,书籍很好,推荐大家阅读!

Python学习之k-近邻算法的更多相关文章

  1. 用Python从零开始实现K近邻算法

    KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...

  2. R语言学习笔记—K近邻算法

    K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...

  3. 02-16 k近邻算法

    目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...

  4. 机器学习实战 - python3 学习笔记(一) - k近邻算法

    一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进 ...

  5. python 机器学习(二)分类算法-k近邻算法

      一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提 ...

  6. 机器学习——KNN算法(k近邻算法)

    一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...

  7. 数据挖掘算法(一)--K近邻算法 (KNN)

    数据挖掘算法学习笔记汇总 数据挖掘算法(一)–K近邻算法 (KNN) 数据挖掘算法(二)–决策树 数据挖掘算法(三)–logistic回归 算法简介 KNN算法的训练样本是多维特征空间向量,其中每个训 ...

  8. 02机器学习实战之K近邻算法

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...

  9. 2.在约会网站上使用k近邻算法

    在约会网站上使用k近邻算法 思路步骤: 1. 收集数据:提供文本文件.2. 准备数据:使用Python解析文本文件.3. 分析数据:使用Matplotlib画二维扩散图.4. 训练算法:此步骤不适用于 ...

  10. GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用

    最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...

随机推荐

  1. css 图片文字对齐

    默认情况,是图片置顶对齐,文字置底对齐,所以通常图片高,文字低,不能水平居中对齐 解决办法:在css中设置图片的vertical-align属性, <img src="" s ...

  2. The Qt Resource System

    The Qt Resource System The Qt resource system is a platform-independent mechanism for storing binary ...

  3. nginx connect() failed,Connection refused,while connecting to upstream fastcgi

    connect() failed (111: Connection refused) while connecting to upstream fastcgi://127.0.0.1:9000 net ...

  4. JS-easyui 扩展easyui.datagrid,添加数据loading遮罩效果代码

    (function (){ $.extend($.fn.datagrid.methods, { //显示遮罩 loading: function(jq){ return jq.each(functio ...

  5. javascript实现记录文本框内文字个数

    最近在做一个项目中遇到这样一个问题,要对文本框中用户输入的文字进行记数,在下面显示出来,因为我们做的是一个短信发送平台,现在我们国家的短信服务,如果你的信息超过了70个字符,短信就会按二条给你下发.所 ...

  6. 软件测试工具MonkeyTalk使用方法

    1.简单介绍 MonkeyTalk软件测试工具由两部分构成:MonkeyTalk IDE 和 MonkeyTalk Agents MonkeyTalk IDE是Eclipse平台的工具,工能是:对iO ...

  7. MyEclipse实现xml的自动提示

    每次出现不能自动提示,蛮烦的.虽然不是一个很难的问题,但是有时候就是记得这个很简单的几步,所以记录下来以备用. 现在mybatis主要是3版本,即此时根据版本3来写的,别的都一样. 1,下载dtd文件 ...

  8. 优矿众包对冲基金计划”优选策略---100w实盘资金管理权!!

    https://uqer.io/contest/ http://www.cnblogs.com/dunitian/p/4939369.html 优连

  9. 平时收集的一些有关UED的团队和个人博客(转)

    UCDChina导航 前端团队 阿里巴巴 UED -- 我们设计的界面,并没有几十亿的流量,但每天来自上百个国家的百万商人在使用着. 阿里巴巴中国站UED -- 阿里巴巴中国站UED成立于1999年, ...

  10. Spring学习笔记——Spring依赖注入原理分析

    我们知道Spring的依赖注入有四种方式,各自是get/set方法注入.构造器注入.静态工厂方法注入.实例工厂方法注入 以下我们先分析下这几种注入方式 1.get/set方法注入 public cla ...