Problem Description

After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
 

Input

Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
 

Output

For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
 

Sample Input

5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
 

Sample Output

Not connected
6

Hint

Hint

Huge input, scanf recommended.

#include <iostream>
#include <vector>
#include <stack>
#include <cstring>
#include <cstdio>
#include <memory.h>
#include<vector>
using namespace std;
int Laxt[],Next[],To[],Len[];
int Laxt2[],Next2[],To2[],ans[];
bool vis[];
int cnt,cnt2;
int dis[],fa[];
void _update()
{
memset(Laxt,-,sizeof(Laxt));
memset(Laxt2,-,sizeof(Laxt2));
memset(vis,false,sizeof(vis));
cnt=cnt2=;
}
void _add(int u,int v,int d){
Next[cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
Len[cnt++]=d;
}
void _add2(int u,int v){
Next2[cnt2]=Laxt2[u];
Laxt2[u]=cnt2;
To2[cnt2++]=v;
Next2[cnt2]=Laxt2[v];
Laxt2[v]=cnt2;
To2[cnt2++]=u;
}
int _findfa(int v){
if(v==fa[v]) return fa[v];
return fa[v]=_findfa(fa[v]);
}
void _tarjan(int v)
{
vis[v]=true;fa[v]=v;
for(int i=Laxt[v];i!=-;i=Next[i]){
if(!vis[To[i]]){
dis[To[i]]=dis[v]+Len[i];
_tarjan(To[i]);
fa[To[i]]=v;
}
}
for(int i=Laxt2[v];i!=-;i=Next2[i]){
if(vis[To2[i]]){
int tmp=_findfa(To2[i]);
if(dis[To2[i]]!=-)
ans[i/]=dis[v]+dis[To2[i]]-*dis[tmp];
else ans[i/]=-;
}
}
}
int main()
{
int n,m,c,i,x,y,z;
while(~scanf("%d %d %d",&n,&m,&c)){
_update();
for(i=;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
_add(x,y,z);
_add(y,x,z);
}
for(i=;i<c;i++){
scanf("%d%d",&x,&y);
_add2(x,y);
}
for(i=;i<=n;i++){
if(!vis[i]){
memset(dis,-,sizeof(dis));
dis[i]=;
_tarjan(i);
}
}
for(i=;i<c;i++)
if(ans[i]==-) printf("Not connected\n");
else printf("%d\n",ans[i]);
}
return ;
}

HDU2874Connections between cities( LCA )Tarjan的更多相关文章

  1. 最近公共祖先(LCA)---tarjan算法

    LCA(最近公共祖先).....可惜我只会用tarjan去做 真心感觉tarjan算法要比倍增算法要好理解的多,可能是我脑子笨吧略略略 最近公共祖先概念:在一棵无环的树上寻找两个点在这棵树上深度最大的 ...

  2. luogu3379 【模板】最近公共祖先(LCA) Tarjan

    LCA的Tarjan算法是一个离线算法,复杂度$O(n+q)$. 我们知道Dfs搜索树时会形成一个搜索栈.搜索栈顶节点cur时,对于另外一个节点v,它们的LCA便是v到根节点的路径与搜索栈开始分叉的那 ...

  3. [HDOJ2874]Connections between cities(LCA, 离线tarjan)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 这题有不连通的情况,特别注意. 觉得是存query的姿势不对,用前向星存了一遍,还是T…… /* ...

  4. 洛谷 P3379 【模板】最近公共祖先(LCA)Tarjan离线

    题目链接:LCA tarjan离线 这道题目WA无数发,最后还是参考了大神的blog 谁会想到因为一个输入外挂WA呢 大概是我的挂是假挂吧...orz(其实加上外挂,速度提升很多) 用链式前向星保存边 ...

  5. Connections between cities(LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题目: Problem Description After World War X, a lot ...

  6. HDU 2874 Connections between cities(LCA)

    题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...

  7. 【HDU 2874】Connections between cities(LCA)

    dfs找出所有节点所在树及到树根的距离及深度及父亲. i和j在一棵树上,则最短路为dis[i]+dis[j]-dis[LCA(i,j)]*2. #include <cstring> #in ...

  8. 洛谷P3379 【模板】最近公共祖先(LCA)

    P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...

  9. 图论--最近公共祖先问题(LCA)模板

    最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...

随机推荐

  1. Smarty模板变量调节器

    Smarty模板变量调节器用法 在smarty里面,怎么修饰文本和变量呢?当然,你可以通过php函数处理文本,然后再通过assign()方法分配到模板,其实smarty提供了变量调节器能够很容易的处理 ...

  2. js文件被浏览器缓存

    如果修改了js文件中的js代码,发布代码到线上后.用户的浏览器使用的还是原来js缓存.所以并不会马上生效. 如何才能让浏览器使用最新的js文件呢? 我去看了一下淘宝,发现也是这样一种方式额,不知道对不 ...

  3. Codeforces Round #265 (Div. 2) E

    这题说的是给了数字的字符串 然后有n种的操作没次将一个数字替换成另一个字符串,求出最后形成的字符串的 数字是多大,我们可以逆向的将每个数推出来,计算出他的值和位数记住位数用10的k次方来记 1位就是1 ...

  4. 使用idea 搭建Spring+mybatis

    1.file-new-project 项目的结构如下: 在WEB-INF 下面新建一个 文件夹lib 右键WEB-INF ,new-Directory 所需要的jar 包有: lib下载地址: 网盘地 ...

  5. Spring整合Quartz定时发送邮件

    功能描述:刚开始接触Quartz,试着用Quartz整合spring实现每隔一分钟发送一封邮件连续发送10次 核心jar: 邮件发送:commons-email-1.2.jar mail.jar(必须 ...

  6. Mysql优化原则_小表驱动大表IN和EXISTS的合理利用

    //假设一个for循环 ; $i < ; $i++) { ; $i < ; $j++) { } } ; $i < ; $i++) { ; $i < ; $j++) { } } ...

  7. 20145221 《Java程序设计》第九周学习总结

    20145221 <Java程序设计>第九周学习总结 教材学习内容总结 整合数据库 JDBC入门 JDBC是用于执行SQL的解决方案,开发人员使用JDBC的标准接口,数据库厂商则对接口进行 ...

  8. 【Java----字符串转义与反转义】

    apache工具包common-lang中有一个很有用的处理字符串的工具类,其中之一就是StringEscapeUtils,这个工具类是在2.3版本以上加上的去的,利用它能很方便的进行html,xml ...

  9. [笔记] SQL性能优化 - 常用语句(一)

    第一步 DBCC DROPCLEANBUFFERS 清除缓冲区 DBCC FREEPROCCACHE 删除计划高速缓存中的元素 从缓冲池中删除所有清除缓冲区.要求具有 sysadmin 固定服务器角色 ...

  10. codeforces 200 div2 C. Rational Resistance 思路题

    C. Rational Resistance time limit per test 1 second memory limit per test 256 megabytes input standa ...