Problem Description

After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
 

Input

Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
 

Output

For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
 

Sample Input

5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
 

Sample Output

Not connected
6

Hint

Hint

Huge input, scanf recommended.

#include <iostream>
#include <vector>
#include <stack>
#include <cstring>
#include <cstdio>
#include <memory.h>
#include<vector>
using namespace std;
int Laxt[],Next[],To[],Len[];
int Laxt2[],Next2[],To2[],ans[];
bool vis[];
int cnt,cnt2;
int dis[],fa[];
void _update()
{
memset(Laxt,-,sizeof(Laxt));
memset(Laxt2,-,sizeof(Laxt2));
memset(vis,false,sizeof(vis));
cnt=cnt2=;
}
void _add(int u,int v,int d){
Next[cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
Len[cnt++]=d;
}
void _add2(int u,int v){
Next2[cnt2]=Laxt2[u];
Laxt2[u]=cnt2;
To2[cnt2++]=v;
Next2[cnt2]=Laxt2[v];
Laxt2[v]=cnt2;
To2[cnt2++]=u;
}
int _findfa(int v){
if(v==fa[v]) return fa[v];
return fa[v]=_findfa(fa[v]);
}
void _tarjan(int v)
{
vis[v]=true;fa[v]=v;
for(int i=Laxt[v];i!=-;i=Next[i]){
if(!vis[To[i]]){
dis[To[i]]=dis[v]+Len[i];
_tarjan(To[i]);
fa[To[i]]=v;
}
}
for(int i=Laxt2[v];i!=-;i=Next2[i]){
if(vis[To2[i]]){
int tmp=_findfa(To2[i]);
if(dis[To2[i]]!=-)
ans[i/]=dis[v]+dis[To2[i]]-*dis[tmp];
else ans[i/]=-;
}
}
}
int main()
{
int n,m,c,i,x,y,z;
while(~scanf("%d %d %d",&n,&m,&c)){
_update();
for(i=;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
_add(x,y,z);
_add(y,x,z);
}
for(i=;i<c;i++){
scanf("%d%d",&x,&y);
_add2(x,y);
}
for(i=;i<=n;i++){
if(!vis[i]){
memset(dis,-,sizeof(dis));
dis[i]=;
_tarjan(i);
}
}
for(i=;i<c;i++)
if(ans[i]==-) printf("Not connected\n");
else printf("%d\n",ans[i]);
}
return ;
}

HDU2874Connections between cities( LCA )Tarjan的更多相关文章

  1. 最近公共祖先(LCA)---tarjan算法

    LCA(最近公共祖先).....可惜我只会用tarjan去做 真心感觉tarjan算法要比倍增算法要好理解的多,可能是我脑子笨吧略略略 最近公共祖先概念:在一棵无环的树上寻找两个点在这棵树上深度最大的 ...

  2. luogu3379 【模板】最近公共祖先(LCA) Tarjan

    LCA的Tarjan算法是一个离线算法,复杂度$O(n+q)$. 我们知道Dfs搜索树时会形成一个搜索栈.搜索栈顶节点cur时,对于另外一个节点v,它们的LCA便是v到根节点的路径与搜索栈开始分叉的那 ...

  3. [HDOJ2874]Connections between cities(LCA, 离线tarjan)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 这题有不连通的情况,特别注意. 觉得是存query的姿势不对,用前向星存了一遍,还是T…… /* ...

  4. 洛谷 P3379 【模板】最近公共祖先(LCA)Tarjan离线

    题目链接:LCA tarjan离线 这道题目WA无数发,最后还是参考了大神的blog 谁会想到因为一个输入外挂WA呢 大概是我的挂是假挂吧...orz(其实加上外挂,速度提升很多) 用链式前向星保存边 ...

  5. Connections between cities(LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题目: Problem Description After World War X, a lot ...

  6. HDU 2874 Connections between cities(LCA)

    题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...

  7. 【HDU 2874】Connections between cities(LCA)

    dfs找出所有节点所在树及到树根的距离及深度及父亲. i和j在一棵树上,则最短路为dis[i]+dis[j]-dis[LCA(i,j)]*2. #include <cstring> #in ...

  8. 洛谷P3379 【模板】最近公共祖先(LCA)

    P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...

  9. 图论--最近公共祖先问题(LCA)模板

    最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...

随机推荐

  1. python的构建工具setup.py

    一.构建工具setup.py的应用场景 在安装python的相关模块和库时,我们一般使用“pip install  模块名”或者“python setup.py install”,前者是在线安装,会安 ...

  2. HDU1978How Many Ways 记忆化dfs+dp

    /*记忆化dfs+dp dp[i][j]代表达到这个点的所有路的条数,那么所有到达终点的路的总数就是这dp[1][1]加上所有他所能到达的点的 所有路的总数 */ #include<stdio. ...

  3. hdu3037 Saving Beans(Lucas定理)

    hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...

  4. Sublime Text 3图标更改

    Sublime Text 3图标更改 步骤: 1.下载ico图标 2.然后更改图标 注意:重点讲解下,如何将png文件转换为ico图标: 网络上单独找sublime text 3的ico图标比较不好找 ...

  5. Python3:sqlalchemy对sybase数据库操作,非sql语句

    Python3:sqlalchemy对sybase数据库操作,非sql语句 # python3 # author lizm # datetime 2018-02-01 10:00:00 # -*- c ...

  6. Ubuntu屏幕录制工具【转】

    本文转载自:https://blog.csdn.net/Draonly/article/details/74898031 原文参考:https://www.sysgeek.cn/simplescree ...

  7. 开源工具-Json 解析器 Jackson 的使用

    Json已经成为当前服务器与 WEB 应用之间数据传输的公认标准.Java 中常见的 Json 类库有 Gson.JSON-lib 和 Jackson 等.相比于其他的解析工具,Jackson 简单易 ...

  8. Python学习札记(三十二) 面向对象编程 Object Oriented Program 3

    参考:访问限制 NOTE 1.eg. #!/usr/bin/env python3 class Student(object): """docstring for Stu ...

  9. Python学习札记(二十二) 函数式编程3 filter & SyntaxError: unexpected EOF while parsing

    参考: filter Problem SyntaxError: unexpected EOF while parsing 遇到该语法错误,一般是由于 括号不匹配 问题. Note 1.filter 用 ...

  10. Mysql语句转义

    String sqlStr = "SELECT * FROM t_sys_dic WHERE idPath LIKE" + "'" + "/19/20 ...