BZOj 墨墨的等式(转化为最短路)题解
题意:中文题意不解释...
思路:这道题居然可以转化为最短路orz,要等式有非负整数解,我们可以转化一下:每个ai不限数量,问你能用ai数组拼出多少个Bmin~Bmax范围内的数,有点像完全背包的感觉,看怎样组合能拼出范围内的数。
我们找出ai中不为零的最小数记为p,如果我们把每个数进行操作ai%p ,那么所有的ai我们都可以用整数倍的p加上它的取模表示了。我们用dis[i]表示如果有一个数x:x%p == i,那么dis储存最小的x,也就是说dis储存着我们能用ai数组拼出的取模p等于i的最小的数,那么dis+n*p我们也能拼出。然后问题就变成了求出dis[i]的最小值,用最短路解决。
代码:
#include<cstdio>
#include<set>
#include<vector>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = +;
const int INF = 0x3f3f3f3f;
bool vis[maxn];
ll dis[maxn];
int a[];
int mod,n;
void spfa(int start){
memset(vis,false,sizeof(vis));
memset(dis,INF,sizeof(dis));
vis[start] = true;
dis[start] = ;
queue<int> q;
while(!q.empty()) q.pop();
q.push(start);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int i = ;i <= n;i++){
int w = a[i];
int v = (u + w) % mod;
if(dis[v] > dis[u] + w){
dis[v] = dis[u] + w;
if(!vis[v]){
q.push(v);
vis[v] = true;
}
}
}
}
}
ll query(ll x){
ll ans = ;
for(int i = ;i < mod;i++){
if(dis[i] <= x)
ans += (x - dis[i]) / mod + ; //k*mod + dis == x
}
return ans;
}
int main(){
ll Bmx,Bmn;
scanf("%d%lld%lld",&n,&Bmn,&Bmx);
mod = INF;
for(int i = ;i <= n;i++){
scanf("%d",&a[i]);
if(a[i] == ){
i--,n--; //为0删除
}
mod = min(mod,a[i]);
}
spfa();
printf("%lld\n",query(Bmx) - query(Bmn - ));
return ;
}
BZOj 墨墨的等式(转化为最短路)题解的更多相关文章
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- bzoj 2118: 墨墨的等式
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...
- bzoj 2118: 墨墨的等式 spfa
题目: 墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值 ...
- [图论训练]BZOJ 2118: 墨墨的等式 【最短路】
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 【BZOJ 2118】 墨墨的等式(Dijkstra)
BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- BZOJ2118:墨墨的等式(最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
随机推荐
- Docker源码分析(二):Docker Client创建与命令执行
1. 前言 如今,Docker作为业界领先的轻量级虚拟化容器管理引擎,给全球开发者提供了一种新颖.便捷的软件集成测试与部署之道.在团队开发软件时,Docker可以提供可复用的运行环境.灵活的资源配置. ...
- JZOJ.5335【NOIP2017模拟8.24】早苗
Description
- mysql优化之explain备忘笔记
今天使用explain来查看sql执行情况的时候发现有的东西忘掉了,故作此篇文章来强化此知识点的记忆. 1.explain作用 exlain 执行结果显示了mysql 存储引擎如何使用索引来处理sel ...
- 08.Curator缓存
可以利用ZooKeeper在集群的各个节点之间缓存数据.每个节点都可以得到最新的缓存的数据.Curator提供了三种类型的缓存方式:Path Cache,Node Cache 和Tree Ca ...
- Sublime 取消每次自动更新弹窗设置
首选项 --> 设置-用户(英文版 : "Preferences - -> "Settings - user"") update_check ...
- SpringIoc的精彩讲解
学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...
- 解决Android版Firefox字体显示过大的问题
在用Android版Firefox查看博客园首页发现中间区域的字体显示非常大,开始以为是首页css对移动版浏览器支持不好. 后来发现原来这是Firefox for Android的知名bug: Tha ...
- Windows Bat 批处理脚本
Windows Bat 批处理脚本 – Getting Started – Variables – Return Codes – stdin, stdout, stderr – If/Then Con ...
- 转!!CMPP 网关错误码说明
http://www.163duanxin.com/msg/1753.htm CMPP错误码说明 与中国移动代码的对应关系. MI::zzzzSMSC返回状态报告的状态值为EXPIREDMJ:zz ...
- Python开发【模块】:time、datatime
时间模块 时间相关的操作,时间有三种表示方式: 时间戳 1970年1月1日之后的秒,即:time.time() 格式化的字符串 2014-11-11 11:11, ...