A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network Engine with >0.1 Timing Error Rate Tolerance for IoT Applications

单位:Harvard(哈佛大学)

这是一篇专门为DNN加速设计的芯片,在CNN加速芯片设计当道的今天也算是非常另类了~~不过能在ISSCC上发表,自然也有它的innovation,下面讲一讲。

就我当前的可以理解部分(知识结构不足哈,Razor timing violation detection这一块暂时不是特别清楚,留着以后再补),我觉得本文的创新点有:(1)稀疏计算,数据0不会参与运算;(2)采用sign-magnitude number format保存参数和计算;

DNN计算(就是一个向量*矩阵)是存在SIMD窗口的,一个输入同时可以计算多个节点。但是很容易想到,如果SIMD窗口太大,数据是重用了,但是参数一次要读太多会使得带宽变大。

因此,作者分析了数据和参数读取的相对比例,如图,可以看出,8通道的SIMD其效率是较高的,带宽也在合理范围内,同时可以在128b位宽的AXI总线下运行获得10x的数据有效重用率。

下面是整体架构图,是一个5阶段的SIMD流水架构,流程基本上是:

1、Host Processor将配置和输入数据载入CFG和IPBUF

2、乘累加器进行计算,数据由IPBUF读入,权重由W-MEM读入

3、在Activation步骤,进行偏置、激活操作,随后将数据写回XBUF(隐藏层结果)

4、向host发起中断请求,数据输出

分别对几个点展开讲一下:

XBUF:有两份,使得同时可以写结果到XBUF,又可以读数据用于计算;

Weight采用sign-magnitude number format:其实就是1bit符号位,后面是绝对值的原码,这样的好处是减少了补码表示带来的bit翻转率,既降低了功耗,也减少了出错率;

MAC Datapath:有8个并行的16bit MAC单元。因为采用SM,所以作者对同号和异号分开处理——其实就是同号乘结果累加,异号减去。

重点还有sparse怎么做。在MAC单元计算完(累加完成),然后要加上Bias,然后过RELU单元(也是因为RELU所以数据结果才稀疏,但是换其他激活函数就不行了),对于0数据(以及小于阈值的比较小的值),是不会写回XBUF的,同时Activation生产了SKIP信号存在临时的NBUF中。NBUF(512B SRAM)中维护的是参数中非零的index,DMA阶段会根据index来生成weight address,用于下个阶段从W-MEM取参数;这样就可以避免0数据的计算cycle了。

最后总结[1]:

DNN ENGINE——一款高能效的DNN加速器(568nj/pred@1.2GHz),时序容差>10^-1@MNIST 98.36%

-Parallelism:10x的数据重用@带宽128b/cycle

-Sparcity:+4x吞吐,-4x能耗

-Resilience:+50%吞吐/-30%能耗(2/Razor)

[1] https://reconfigdeeplearning.com/2017/02/08/isscc-2017-session-14-slides14-3/

[2] ISSCC2017, A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network Engine with >0.1 Timing Error Rate Tolerance for IoT Applications

ISSCC 2017论文导读 Session 14: A 28nm SoC with a 1.2GHz Prediction Sparse Deep-Neural-Network Engine的更多相关文章

  1. ISSCC 2017论文导读 Session 14:ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel DVAFS CNN Processor in 28nm

    ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Proce ...

  2. ISSCC 2017论文导读 Session 14 Deep Learning Processors,DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN

    转载请注明,本文出自Bin的专栏http://blog.csdn.net/xbinworld,谢谢! DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Process ...

  3. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  4. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network SOC

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  5. ISSCC 2017论文导读 Session 14:A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Pro

    A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrate ...

  6. ISSCC 2017论文导读 Session 14:A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight

    A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight Storage Using Non-Uniform Mem ...

  7. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  8. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  9. 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)

    XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

随机推荐

  1. LeetCode——House Robber

    Description: You are a professional robber planning to rob houses along a street. Each house has a c ...

  2. Android在ArrayAdapter<>里如何得到List<>的Items

    public class ItemAdapter extends ArrayAdapter<DemoModel> { private final List<DemoModel> ...

  3. 小技巧------教你释放C盘空间

    1.删除休眠文件hiberfil.sys. 该文件在c盘根部目录为隐藏的系统文件,隐藏的这个hiberfil.sys文件大小正好和自己的物理内存是一致的,当你让电脑进入休眠状态时,windows7在关 ...

  4. 【vue】---Object.defineProperty基本使用---【巷子】

    1.object.defineProperty 给一个对象定义一个新的属性或者在修改一个对象现有的属性,并返回这个对象 语法: Object.defineProperty(参数1,参数2,参数3) 参 ...

  5. 170613、Spring整合RabbitMQ实例

    一.rabbitMQ简介 1.1.rabbitMQ的优点(适用范围)1. 基于erlang语言开发具有高可用高并发的优点,适合集群服务器.2. 健壮.稳定.易用.跨平台.支持多种语言.文档齐全.3. ...

  6. yii2.0 如何按需加载并管理CSS样式及JS脚本

    链接:http://www.yiichina.com/tutorial/399 (注:以下为Yii2.0高级应用测试) Yii2.0对于CSS/JS 管理,使用AssetBundle资源包类. 视图如 ...

  7. PHP 的“魔术常量”

    名称 说明 __LINE__ 文件中的当前行号. __FILE__ 文件的完整路径和文件名.如果用在被包含文件中,则返回被包含的文件名.自 PHP 4.0.2 起,__FILE__ 总是包含一个绝对路 ...

  8. Hadoop讲解

    1.简介 Hadoop是一款开源的大数据通用处理平台,其提供了分布式存储和分布式离线计算,适合大规模数据.流式数据(写一次,读多次),不适合低延时的访问.大量的小文件以及频繁修改的文件. *Hadoo ...

  9. SQL---->mySQl数据库1------表的增删改查

    一.创建表(增) 二.删除表(删) drop table 表名; 三.修改表(改) 3.1修改表——>增加一列 3.2修改表——>修改列的值 3.3修改表——>删除列 3.4修改表— ...

  10. Git 进阶之底层相关

    Git is a content-addressable filesystem. 1. Plumbing 和 Porcelain "Plumbing commands": Git ...