一、

1. Lowest Common Ancestor

 class Solution {
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (root == NULL || root == A || root == B) {
return root;
}
TreeNode* left = lowestCommonAncestor(root->left, A, B);
TreeNode* right = lowestCommonAncestor(root->right, A, B);
if (left != NULL && right != NULL) {
return root;
}
if (left != NULL) {
return left;
}
if (right != NULL) {
return right;
}
return NULL;
}
};

refer : July,剑指offer

2. Lowest Common Ancestor of a Binary Search Tree

 class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == NULL || p == NULL || q == NULL) {
return NULL;
}
if (root->val > p->val && root->val > q->val) {
return lowestCommonAncestor(root->left, p, q);
}
if (root->val < p->val && root->val < q->val) {
return lowestCommonAncestor(root->right, p, q);
}
return root;
}
};

二. Level order [BFS]

1. Binary Tree Level Order Traversal

 class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> result;
if (root == NULL) {
return result;
}
queue<TreeNode*> q;
q.push(root);
while(!q.empty()) {
int size = q.size();
vector<int> v;
for (int i = ; i < size; i++) {
TreeNode* tmp = q.front();
q.pop();
v.push_back(tmp->val);
if (tmp->left != NULL) {
q.push(tmp->left);
}
if (tmp->right != NULL) {
q.push(tmp->right);
}
}
result.push_back(v);
}
return result;
}
};

2. Binary Tree Level Order Traversal II

 class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<vector<int>> result;
if (root == NULL) {
return result;
}
queue<TreeNode*> q;
q.push(root);
while(!q.empty()) {
int size = q.size();
vector<int> v;
for (int i = ; i < size; i++) {
TreeNode* tmp = q.front();
q.pop();
v.push_back(tmp->val);
if (tmp->left != NULL) {
q.push(tmp->left);
}
if (tmp->right != NULL) {
q.push(tmp->right);
}
}
result.push_back(v);
}
reverse(result.begin(), result.end());
return result;
}
};

在1的基础上多加一句reverse即可。

3. Binary Tree Zigzag Level Order Traversal

 class Solution {
public:
vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
vector<vector<int>> result;
if (root == NULL) {
return result;
}
queue<TreeNode*> q;
q.push(root);
int count = ;
while(!q.empty()) {
count++;
int size = q.size();
vector<int> v;
for (int i = ; i < size; i++) {
TreeNode* tmp = q.front();
q.pop();
v.push_back(tmp->val);
if (tmp->left != NULL) {
q.push(tmp->left);
}
if (tmp->right != NULL) {
q.push(tmp->right);
}
}
if (count % == ) {
reverse(v.begin(), v.end());
}
result.push_back(v);
}
return result;
}
};

在1的基础上多加个count变量,偶数行就reverse一下即可

三、

1. Insert Node in a Binary Search Tree

 TreeNode* insertNode(TreeNode* root, TreeNode* node) {
if (root == NULL) {
return node;
}
if (node->val > root->val) {
root->right = insertNode(root->right, node);
} else {
root->left = insertNode(root->left, node);
}
return root;
}

2. Search Range in Binary Search Tree

code1:

 class Solution {
public:
vector<int> searchRange(TreeNode* root, int k1, int k2) {
helper(root, k1, k2);
return result;
}
void helper(TreeNode* root, int k1, int k2) {
if (root == NULL) {
return;
}
if (k1 < root->val) {//说明左子树里有可能有
helper(root->left, k1, k2);
}
if (root->val >= k1 && root->val <= k2) {
result.push_back(root->val);
}
if (k2 > root->val) {
helper(root->right, k1, k2);
}
}
private:
vector<int> result;
};

code2: 自己实现的,太繁琐。

 vector<int> searchRange(TreeNode* root, int k1, int k2) {
vector<int> result;
if (root == NULL) {
return result;
}
if (root->val < k1) {
return searchRange(root->right, k1, k2);
}
if (root->val > k2) {
return searchRange(root->left, k1, k2);
}
if (root->val >= k1 && root->val <= k2) {
vector<int> tmp1 = searchRange(root->left, k1, root->val - );
vector<int> tmp2 = searchRange(root->right, root->val + , k2);
result.insert(result.end(), tmp1.begin(), tmp1.end());
result.push_back(root->val);
result.insert(result.end(), tmp2.begin(), tmp2.end());
}
return result;
}

Binary Search Tree Iterator

 class BSTIterator {
public:
BSTIterator(TreeNode* root) {
pushAll(root);
} bool hasNext() {
return (!myStack.empty());
} int next() {
TreeNode* tmp = myStack.top();
myStack.pop();
pushAll(tmp->right);
return tmp->val;
} private:
stack<TreeNode*> myStack;
void pushAll(TreeNode* node);
}; void BSTIterator::pushAll(TreeNode* node) {
while (node != NULL) {
myStack.push(node);
node = node->left;
}
} /**
* Your BSTIterator will be called like this:
* BSTIterator i = BSTIterator(root);
* while (i.hasNext()) cout << i.next();
*/

Remove Node in Binary Search Tree

Binary Tree Maximum Path Sum

参见 ref十五

Binary Tree Serialization

===================================================

对于n个数的数组,一个数x如果从左往右数是第k个数,那么从右往左数的话是第(n - k + 1)个数。

leetcode Ch4-Binary Tree & BFS & Divide/Conquer的更多相关文章

  1. [LeetCode] 199. Binary Tree Right Side View 二叉树的右侧视图

    Given a binary tree, imagine yourself standing on the right side of it, return the values of the nod ...

  2. leetcode 199 :Binary Tree Right Side View

    // 我的代码 package Leetcode; /** * 199. Binary Tree Right Side View * address: https://leetcode.com/pro ...

  3. LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...

  4. (二叉树 递归) leetcode 145. Binary Tree Postorder Traversal

    Given a binary tree, return the postorder traversal of its nodes' values. Example: Input: [1,null,2, ...

  5. leetcode 199. Binary Tree Right Side View 、leetcode 116. Populating Next Right Pointers in Each Node 、117. Populating Next Right Pointers in Each Node II

    leetcode 199. Binary Tree Right Side View 这个题实际上就是把每一行最右侧的树打印出来,所以实际上还是一个层次遍历. 依旧利用之前层次遍历的代码,每次大的循环存 ...

  6. [LeetCode] 549. Binary Tree Longest Consecutive Sequence II_ Medium tag: DFS recursive

    Given a binary tree, you need to find the length of Longest Consecutive Path in Binary Tree. Especia ...

  7. LeetCode 145 Binary Tree Postorder Traversal(二叉树的兴许遍历)+(二叉树、迭代)

    翻译 给定一个二叉树.返回其兴许遍历的节点的值. 比如: 给定二叉树为 {1. #, 2, 3} 1 \ 2 / 3 返回 [3, 2, 1] 备注:用递归是微不足道的,你能够用迭代来完毕它吗? 原文 ...

  8. LeetCode—— Invert Binary Tree

    LeetCode-- Invert Binary Tree Question invert a binary tree. 4 / \ 2 7 / \ / \ 1 3 6 9 to 4 / \ 7 2 ...

  9. Java for LeetCode 107 Binary Tree Level Order Traversal II

    Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left ...

随机推荐

  1. 深入理解react中的虚拟DOM、diff算法

    文章结构: React中的虚拟DOM是什么? 虚拟DOM的简单实现(diff算法) 虚拟DOM的内部工作原理 React中的虚拟DOM与Vue中的虚拟DOM比较 React中的虚拟DOM是什么?   ...

  2. 15.Iterator和for...of循环

    1.Iterator(遍历器)的概念 JavaScript原有的表示“集合”的数据结构,主要是数组(Array)和对象(Object),ES6又添加了Map和Set.这样就有了四种数据集合,用户还可以 ...

  3. 【分步详解】两个有序数组中的中位数和Top K问题

    (这也是一道leetcode的经典题目:<LeetCode>解题笔记:004. Median of Two Sorted Arrays[H] 问题介绍 这是个超级超级经典的分治算法!!这个 ...

  4. IO流(二)字符流

    1.字符流:在字节流的基础上添加了编码机制.很大程度上和字节流操作一样的,字符流只能操作文本类文件,准确的说应该是纯文本类文件.例如.txt,.java,.cpp,.html等 编码:每一个国家都有自 ...

  5. Hadoop Hive概念学习系列之hive三种方式区别和搭建、HiveServer2环境搭建、HWI环境搭建和beeline环境搭建(五)

     说在前面的话 以下三种情况,最好是在3台集群里做,比如,master.slave1.slave2的master和slave1都安装了hive,将master作为服务端,将slave1作为服务端. 以 ...

  6. javac的访问者模式2

    (5)Printer /** * A combined type/symbol visitor for generating non-trivial(有意义的) localized string * ...

  7. JSTL之<c:set>的各种用法

    <c:set>标签用于设置变量值和对象属性 语法格式 <span style="font-size:18px;"><c:set var="& ...

  8. Js 中的false,零值,null,undefined和空字符串对象

    转自  http://www.imkevinyang.com/2009/07/javascript-中的false零值nullundefined和空字符串对象.html 在Javascript中,我们 ...

  9. 关于delete和对象复制

    本码农的惯例,开篇废话几句... 前天小生又被虐了... 没办法,作为一个资深code user,我用代码的能力,解决问题的能力自问是不弱的... 但是自身的前端基础说实话还是不过硬,最明显的表现就是 ...

  10. [转]MAC:删除终端默认前缀的计算机名

    MAC:删除终端默认前缀的计算机名 1.打开终端 输入 sudo vi /etc/bashrc,提示输入密码就是计算机的密码. 2.点击i将编辑模式改成insert修改文档,使用#注释PS1=’\h: ...