我写不动前两个了。

原谅一下。


【题目描述】

\(\varphi\)函数是数论中非常常用的函数。对于正整数 x,\(\varphi\)(x) 表示不超过 x 的所有正整数

与 x 互质的个数。

现在我们对它进行一次拓展:对于正整数 x,y,定义 \(\varphi\)(x,y) 表示不超过 y 的所有正

整数与 x 互质的个数。

现在我们给定正整数 n 和 m,对于所有不超过 n 的正整数 i,求 \(\varphi\)(i,m)。

【输入格式】

从文件 phi.in 中读入数据。

输入仅一行两个正整数 n 和 m。

【输出格式】

输出到文件 phi.out 中。

输出 n 行,每行一个整数。第 i 行表示 \(\varphi\)(i,m)。

【样例输入】

11 10

【样例输出】

10

5

7

5

8

3

9

5

7

4

10

以上题面。

顺便补一句,以上算法可接受的复杂度是\(O(n\sqrt n)\)。

容易知道,我们枚举所有\(i\leq n\)时,时间复杂度是\(O(n)\)。所以对于每个数的判断,我们可接受的复杂度大约是\(O(\sqrt n)\)。

考虑原来做过的题类似的做法。对于一个数\(i\),与这个数互质的数的本质实际上是不存在与\(i\)相同的质因子。所以对于每个\(i\),我们用\(O(\sqrt n)\)的复杂度求出其所有质因子作为预处理;

而对于每一个求出的质因子,任何含有该质因子的数都不能贡献到答案上。但是由于存在同时具有好几个该数质因子的情况,考虑容斥原理:

举个例子,如果一个数有3个质因子,设其为\(a_1,a_2,a_3\),则\(ans=m-m/a1-m/a2-m/a3+m/a1/a2+m/a2/a3+m/a1/a3-m/a1/a2/a3\)。其中\(m\)是最大取值个数。

同理,设一个数有k个质因子,则容易知道:

\(ans=m-m/(所有奇数个a_k相乘的可能)+m/(所有偶数个a_k)相乘的可能\)。

容易证明。当我们减去所有含有单个质因子的数时,我们多减去了所有严格含有两个质因子的数;再加上严格含有两个质因子的数,又多加了严格含有三个质因子的数;……以此类推,其实是\(k\)阶维恩图上的容斥原理。

所以我们可以用一个二进制数的每一位代表该质因子是否被选中。若选中了偶数个质因子,则加上;否则减去。

上代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define dep(i,n,a) for(int i=n;i>=a;i--)
#define int long long
using namespace std;
int n,m,prime[100050],idx,ans,book_prime[100050],idx1;
bool is_prime[100050],book[100050],mark[100050];
inline int read()
{
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
signed main()
{
memset(prime,-1,sizeof prime);
n=read(),m=read();
rep(i,1,n)
{
memset(book,0,sizeof book);
memset(mark,0,sizeof mark);
ans=m;
idx1=0;
int temp=i;
int qqqqqq=sqrt(i);
rep(j,2,qqqqqq)
{
if(temp%j==0)
{
book_prime[++idx1]=j;
while(temp%j==0)
temp/=j;
}
}
if(temp>1)
book_prime[++idx1]=temp;
int maxn=(1<<idx1)-1;
rep(j,1,maxn)
{
int cnt=0;
int tmp=j;
int base=1;
int mul=1;
while(tmp)
{
if(tmp&1)
++cnt,mul*=book_prime[base];
++base;
tmp>>=1;
}
if(cnt&1)ans-=m/mul;
else ans+=m/mul;
}
printf("%lld\n",ans);
}
return 0;
}

2019.10.28 CSP%您赛第四场t3的更多相关文章

  1. 2019.10.29 CSP%您赛第四场t2

    我太菜了我竟然不会分层图最短路 ____________________________________________________________________________________ ...

  2. 2019.10.26 CSP%您赛第三场

    \(CSP\)凉心模拟^_^ --题源\(lqx.lhc\)等各位蒟蒻 题目名称 比赛 传递消息 开关灯 源文件名 \(competition.cpp\) \(message.cpp\) \(ligh ...

  3. 2019.10.24 CSP%你赛第二场d1t3

    题目描述 Description 精灵心目中亘古永恒的能量核心崩溃的那一刻,Bzeroth 大陆的每个精灵都明白,他们的家园已经到了最后的时刻.就在这危难关头,诸神天降神谕,传下最终兵器——潘少拉魔盒 ...

  4. 【春训团队赛第四场】补题 | MST上倍增 | LCA | DAG上最长路 | 思维 | 素数筛 | 找规律 | 计几 | 背包 | 并查集

    春训团队赛第四场 ID A B C D E F G H I J K L M AC O O O O O O O O O 补题 ? ? O O 传送门 题目链接(CF Gym102021) 题解链接(pd ...

  5. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  6. 2019.10.15 CSP初赛知识点整理

    初赛需要的知识点整理如下: (1)计算机的硬件组成与基本常识 (2)单位/进制的转换 (3)进制/逻辑运算相关 (4)概率与期望 (5)排序的各种性质 (6)简单数据结构的使用(栈.队列.链表等) ( ...

  7. 【2019.10.7 CCF-CSP-2019模拟赛 T3】未知的数组(unknown)(并查集+动态规划)

    预处理 考虑模数\(10\)是合数不好做,所以我们可以用一个常用套路: \(\prod_{i=l}^ra_i\equiv x(mod\ 10)\)的方案数等于\(\prod_{i=l}^ra_i\eq ...

  8. 【2019.10.7 CCF-CSP-2019模拟赛 T2】绝对值(abs)(线段树细节题)

    找规律 设\(p_i=a_{i+1}-a_i\),则答案就是\(\sum_{i=1}^{n-1}p_i\). 考虑若将\(a_i\)加上\(x\)(边界情况特殊考虑),就相当于是将\(p_{i-1}\ ...

  9. 【2019.10.7 CCF-CSP-2019模拟赛 T1】树上查询(tree)(思维)

    思维 这道题应该算是一道思维题吧. 首先你要想到,既然这是一棵无根树,就要明智地选择根--以第一个黑点为根(不要像我一样习惯性以\(1\)号点为根,结果直到心态爆炸都没做出来). 想到这一点,这题就很 ...

随机推荐

  1. librosa语音信号处理

    librosa是一个非常强大的python语音信号处理的第三方库,本文参考的是librosa的官方文档,本文主要总结了一些重要,对我来说非常常用的功能.学会librosa后再也不用用python去实现 ...

  2. Widget 中的 State 解析

    StatefulWidget 应对有交互.需要动态变化视觉效果的场景 StatelessWidget 则用于处理静态的.无状态的视图展示 那么,StatelessWidget 是否有存在的必要?Sta ...

  3. Mybatis逆向工程过程中出现targetRuntime in context mybatisGenerator is invalid

    最开始设置的Mybatis,但是逆向工程准备就绪后出现问题 报错为targetRuntime in context mybatisGenerator is invalid 后来修改为Mybatis3能 ...

  4. Java String 类解析

    I.构造函数: public String() {} 默认构造函数 public String(String original) {} 使用原有字符串构造  public String(char va ...

  5. .NET生成漂亮桌面背景

    .NET生成漂亮桌面背景 一天,我朋友指着某某付费软件对我说,这个东西不错,每天生成一张桌面背景,还能学英语(放置名人名言和翻译)!我说,这东西搞不好我也能做,然后朋友说,"如果你搞出来了, ...

  6. opencv目标检测之canny算法

    canny canny的目标有3个 低错误率 检测出的边缘都是真正的边缘 定位良好 边缘上的像素点与真正的边缘上的像素点距离应该最小 最小响应 边缘只能标识一次,噪声不应该标注为边缘 canny分几步 ...

  7. Julia初学备忘

    println("hello!") println("hello!") print("hello!") print("hello! ...

  8. js校验对象是否全部为空

    function judgeIsNotBlank(obj) { var bool = true; var arr = Object.keys(obj); ; for(var key in obj){ ...

  9. Angular7 HttpClient处理多个请求

    1. MergeMap - 串联请求 后一个请求需要前一个请求的返回结果时,需要使用串联请求. 可以使用MergeMap实现, 优势是减少嵌套,优化代码: 代码如下: import {HttpClie ...

  10. S2-052 漏洞复现

    Structs2框架已知的漏洞编号如下: S2-005 S2-009 S2-016 (含S2-013) S2-019 S2-020 S2-021 S2-032 S2-037(含S2-033) DevM ...