背景

由于项目上Flink在设置parallel多于1的情况下,job没法正确地获取watermark,所以周末来研究一下一部分,大概已经锁定了原因:

虽然我们的topic只设置了1的partition,但是Kafka的Comsumer还是起了好几个subtask去读索引是2、3的partition,然后这几个subtask的watermark一直不更新,导致我们job整体的watermark一直是Long.MIN_VALUE。现在需要去了解一下subtask获取partition的流程,等上班的时候debug一遍应该就可以知道原因。

翻源码的过程

通过log找到分配partition的大概位置

从图中可以看到,在org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase这个类中可以找到一些关键信息。

跟踪源码

往上翻翻,看有没有有用信息

关键源码,附上注释

	public void open(Configuration configuration) throws Exception {
// determine the offset commit mode
this.offsetCommitMode = OffsetCommitModes.fromConfiguration(
getIsAutoCommitEnabled(),
enableCommitOnCheckpoints,
((StreamingRuntimeContext) getRuntimeContext()).isCheckpointingEnabled()); // create the partition discoverer
this.partitionDiscoverer = createPartitionDiscoverer(
topicsDescriptor,
getRuntimeContext().getIndexOfThisSubtask(),
getRuntimeContext().getNumberOfParallelSubtasks());
this.partitionDiscoverer.open(); subscribedPartitionsToStartOffsets = new HashMap<>();
// 重点函数,这个函数或获取到subtask的所有partition。
final List<KafkaTopicPartition> allPartitions = partitionDiscoverer.discoverPartitions();
if (restoredState != null) {
...
} else {
// use the partition discoverer to fetch the initial seed partitions,
// and set their initial offsets depending on the startup mode.
// for SPECIFIC_OFFSETS and TIMESTAMP modes, we set the specific offsets now;
// for other modes (EARLIEST, LATEST, and GROUP_OFFSETS), the offset is lazily determined
// when the partition is actually read.
switch (startupMode) {
...
default:
for (KafkaTopicPartition seedPartition : allPartitions) {
subscribedPartitionsToStartOffsets.put(seedPartition, startupMode.getStateSentinel());
}
} if (!subscribedPartitionsToStartOffsets.isEmpty()) {
switch (startupMode) {
...
case GROUP_OFFSETS:
LOG.info("Consumer subtask {} will start reading the following {} partitions from the committed group offsets in Kafka: {}",
getRuntimeContext().getIndexOfThisSubtask(),
subscribedPartitionsToStartOffsets.size(),
subscribedPartitionsToStartOffsets.keySet());
}
} else {
LOG.info("Consumer subtask {} initially has no partitions to read from.",
getRuntimeContext().getIndexOfThisSubtask());
}
} public List<KafkaTopicPartition> discoverPartitions() throws WakeupException, ClosedException {
if (!closed && !wakeup) {
try {
List<KafkaTopicPartition> newDiscoveredPartitions; // (1) get all possible partitions, based on whether we are subscribed to fixed topics or a topic pattern
if (topicsDescriptor.isFixedTopics()) {
// 对于没有使用通配符的topic,直接获取topic的所有partition
newDiscoveredPartitions = getAllPartitionsForTopics(topicsDescriptor.getFixedTopics());
} else {
// 对于使用了通配符的topic, 先找到所有topic,再一一match
List<String> matchedTopics = getAllTopics(); // retain topics that match the pattern
Iterator<String> iter = matchedTopics.iterator();
while (iter.hasNext()) {
if (!topicsDescriptor.isMatchingTopic(iter.next())) {
iter.remove();
}
} if (matchedTopics.size() != 0) {
// get partitions only for matched topics
newDiscoveredPartitions = getAllPartitionsForTopics(matchedTopics);
} else {
newDiscoveredPartitions = null;
}
} // (2) eliminate partition that are old partitions or should not be subscribed by this subtask
if (newDiscoveredPartitions == null || newDiscoveredPartitions.isEmpty()) {
throw new RuntimeException("Unable to retrieve any partitions with KafkaTopicsDescriptor: " + topicsDescriptor);
} else {
Iterator<KafkaTopicPartition> iter = newDiscoveredPartitions.iterator();
KafkaTopicPartition nextPartition;
while (iter.hasNext()) {
nextPartition = iter.next();
// 只保留符合要求的partition,这就是我们要找的函数
if (!setAndCheckDiscoveredPartition(nextPartition)) {
iter.remove();
}
}
} return newDiscoveredPartitions;
}...
}...
} public boolean setAndCheckDiscoveredPartition(KafkaTopicPartition partition) {
if (isUndiscoveredPartition(partition)) {
discoveredPartitions.add(partition); // 在这
return KafkaTopicPartitionAssigner.assign(partition, numParallelSubtasks) == indexOfThisSubtask;
} return false;
} public static int assign(KafkaTopicPartition partition, int numParallelSubtasks) {
// 先算出此topic的hash(partition.getTopic().hashCode() * 31),这里不知道为什么不直接用hash,还要再*31,然后取正数(& 0x7FFFFFFF),最后获取到此topic的起始位置。
int startIndex = ((partition.getTopic().hashCode() * 31) & 0x7FFFFFFF) % numParallelSubtasks; // here, the assumption is that the id of Kafka partitions are always ascending
// starting from 0, and therefore can be used directly as the offset clockwise from the start index
// 计算当前的partition应该属于哪个subtask。例如:一共有20个subtask,算出来的起始位置是5,partition是5,那么最后就是
// (5 + 5) % 20 = 10, 这个partition应该分给10号subtask。
return (startIndex + partition.getPartition()) % numParallelSubtasks;
}

思考

某topic的每个partition会分给哪个subtask其实是确定的

topic名字是确定的 -> topic的hashCode是确定的 && subtask的数量是确定的 -> startIndex是确定的 -> 某partition会分给哪个subtask其实是确定的

为什么要算startIndex

大概是为了平均分配不同的topic,如果topic很多,每个topic都只从0开始,那么subtask 0,1,2之类的靠前subtask就需要读大量的partition。

Kafka源码研究--Comsumer获取partition下标的更多相关文章

  1. Apache Kafka源码分析 – Replica and Partition

    Replica 对于local replica, 需要记录highWatermarkValue,表示当前已经committed的数据对于remote replica,需要记录logEndOffsetV ...

  2. org.reflections 接口通过反射获取实现类源码研究

    org.reflections 接口通过反射获取实现类源码研究 版本 org.reflections reflections 0.9.12 Reflections通过扫描classpath,索引元数据 ...

  3. 【Kafka源码】Kafka代码模块

    Kafka源码依赖于Scala环境,首先需要安装scala,这块请自行百度进行安装. 传送门 当然,我们要分析源码,需要下载源码,请自行从github上面下载. 说明:本文使用的kafka版本为0.1 ...

  4. Kafka源码分析(三) - Server端 - 消息存储

    系列文章目录 https://zhuanlan.zhihu.com/p/367683572 目录 系列文章目录 一. 业务模型 1.1 概念梳理 1.2 文件分析 1.2.1 数据目录 1.2.2 . ...

  5. kafka源码分析之一server启动分析

    0. 关键概念 关键概念 Concepts Function Topic 用于划分Message的逻辑概念,一个Topic可以分布在多个Broker上. Partition 是Kafka中横向扩展和一 ...

  6. Kakfa揭秘 Day3 Kafka源码概述

    Kakfa揭秘 Day3 Kafka源码概述 今天开始进入Kafka的源码,本次学习基于最新的0.10.0版本进行.由于之前在学习Spark过程中积累了很多的经验和思想,这些在kafka上是通用的. ...

  7. Kafka 源码剖析

    1.概述 在对Kafka使用层面掌握后,进一步提升分析其源码是极有必要的.纵观Kafka源码工程结构,不算太复杂,代码量也不算大.分析研究其实现细节难度不算太大.今天笔者给大家分析的是其核心处理模块, ...

  8. Apache Kafka源码分析 – Broker Server

    1. Kafka.scala 在Kafka的main入口中startup KafkaServerStartable, 而KafkaServerStartable这是对KafkaServer的封装 1: ...

  9. Kafka源码系列之源码分析zookeeper在kafka的作用

    浪尖的kafka源码系列以kafka0.8.2.2源码为例给大家进行讲解的.纯属个人爱好,希望大家对不足之处批评指正. 一,zookeeper在分布式集群的作用 1,数据发布与订阅(配置中心) 发布与 ...

随机推荐

  1. POA理论:不要被你的目标欺骗了你

    ![](https://img2018.cnblogs.com/blog/330316/201909/330316-20190922210844977-255725510.jpg) 最近通过<跃 ...

  2. Spring框架学习笔记(1)——控制反转IOC与依赖注入DI

    Spring框架的主要作用,就是提供了一个容器,使用该容器就可以创建并管理对象.比如说Dao类等,又或者是具有多依赖关系的类(Student类中包含有Teacher类的成员变量) Spring有两个核 ...

  3. zipkin+elk微服务日志收集分析系统

    docker安装elk日志分析系统 在win10上安装docker环境 tip:win7/8 win7.win8 系统 win7.win8 等需要利用 docker toolbox 来安装,国内可以使 ...

  4. mysql8.0版本忘记root密码

    1.先关掉系统服务 net stop mysql 2.进入mysql安装目录的bin文件中,以管理员的方式运行cmd,然后输入如下命令,实现无密码登陆 mysqld --console --skip- ...

  5. [Linux] CentOS 显示 -bash: vim: command not found

    转载自:https://www.cnblogs.com/wenqiangwu/p/3288349.html i. 那么如何安裝 vim 呢?输入rpm -qa|grep vim 命令, 如果 vim ...

  6. 细谈Redis五大数据类型

    文章原创于公众号:程序猿周先森.本平台不定时更新,喜欢我的文章,欢迎关注我的微信公众号. 上一篇文章有提到,Redis中使用最频繁的有5种数据类型:String.List.Hash.Set.SortS ...

  7. jenkins自动化部署项目1--下载安装启动(windows)

    年初以来断断续续研究jenkins自动化部署项目,前些天终于搞定了,接下来一点点把做的时候遇到的坑以及自己的心得写下来,方便以后复用. 我的jenkins服务是是部署在windows上的 一.下载安装 ...

  8. (java实现)单链表

    什么是单链表 在了解单链表之前,你知道什么是链表吗?如果你不知道什么是链表,可以看看我的这篇博客<链表-LinkList> 单链表是链表的其中一种基本结构.一个最简单的结点结构如图所示,它 ...

  9. Idea 配置Jrebel热部署

    虽说Idea自带热更新功能,但是一旦mapper更改,则不能及时更新,影响开发效率. 接下来,我们来配置Jrebel热更新,简单方便实用. 第一步:进入插件下载页面. 第二步:安装jrebel插件. ...

  10. java8 运算语法集

    1.分组并进行求和组合运算 示例主要代码: List<String> items = Arrays.asList("apple", "apple", ...