strGame:博弈论,trie
挺有意思的一道题。初探博弈论。
最好自己思考?
我们先考虑只有1轮游戏的情况。
这题明显要在字符串上一位一位地走,所以对字符串建立起trie。
最终建立起的trie的叶节点就是必败位置了。
对于非叶节点,如果它有一个儿子是必败节点,那么这个节点就是必胜节点了。(类似与mex函数)
那么如果根节点必胜,那么就是先手必胜,否则就是后手必胜了。
如果最后一轮后手必胜,那么两个人就需要争夺最后一轮的后手,所以他们要赢倒数第二轮。
而倒数第二轮和最后一轮是一样的,那么倒数第二轮也是后手必胜。倒数第二轮的后手整场游戏也必胜。
以此类推到倒数第三轮,倒数第四轮。。。直到第一轮,都一样。
所以,如果某一轮中后手必胜,那么整场游戏后手Dirty必胜。
剩下的情况就是先手必胜,那么就是要争夺先手,那么就要尽量输掉倒数第二轮。
如何判定先手能否必定让自己输掉一轮游戏?
只要把trie树的叶节点改为必胜节点就好了,再跑一遍。
那么如果先手可以必定让自己输掉一轮游戏,也能必定让自己赢一轮游戏。
那么除了最后一轮以外他都可以让自己输掉以取得先手,直到最后一轮让自己取胜。
所以,如果某一轮中先手必胜,先手在相反游戏中也必胜(即可以让自己必定输掉),那么整场游戏先手Pure必胜。
剩下的就是先手在一轮游戏中必胜,但是不能在相反游戏中取胜(即自己不能必定输掉)。
最后一轮是先手必胜。
倒数第二轮中要争夺最后一轮的先手,故要输掉,所以倒数第二轮中的后手在整场游戏中必胜。
倒数第三轮中要争夺倒数第二轮的后手,要赢,所以倒数第三轮的先手在整场游戏中必胜。
以此类推。。。
所以,如果一轮游戏先手必胜,而相反游戏后手必胜(即先手不能让自己输掉),总轮数为奇数时,先手Pure必胜。否则,后手Dirty必胜。
好题。
自己思考酣畅淋漓(数学自习灵感++)
#include<cstdio>
#include<cstring>
using namespace std;
int k,trie[][],w[][],cnt,n,rt,len;char s[];
void insert(int &p,int al){
if(!p)p=++cnt;if(al==len)return;
insert(trie[p][s[al]-'a'],al+);
}
void dfs(int p){
int hs=;w[][p]=w[][p]=;
for(int i=;i<=;++i)if(trie[p][i]){hs=;break;}
if(!hs){w[][p]=;w[][p]=;return;}
for(int i=;i<=;++i)if(trie[p][i]){
dfs(trie[p][i]);
if(!w[][trie[p][i]])w[][p]=;
if(!w[][trie[p][i]])w[][p]=;
}
}
int main(){
int t;scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);rt=cnt=;memset(trie,,sizeof trie);
for(int i=;i<=n;++i)scanf("%s",s),len=strlen(s),insert(rt,);
dfs(rt);//for(int i=1;i<=cnt;++i)printf("%d %d\n",w[0][i],w[1][i]);
if(!w[][rt])puts("Dirty");
else if(w[][rt])puts("Pure");
else if(k&)puts("Pure");
else puts("Dirty");
}
}
strGame:博弈论,trie的更多相关文章
- 20181228 模拟赛 T3 字符串游戏 strGame 博弈论 字符串
3 字符串游戏(strGame.c/cpp/pas) 3.1 题目描述 pure 和 dirty 决定玩 T 局游戏.对于每一局游戏,有n个字符串,并且每一局游戏由K轮组成.具体规则如下:在每一轮 ...
- [杂题]:staGame(博弈论+Trie树+DFS)
题目描述 $pure$和$dirty$决定玩$T$局游戏.对于每一局游戏,有$n$个字符串,并且每一局游戏由$K$轮组成.具体规则如下:在每一轮游戏中,最开始有一个空串,两者轮流向串的末尾添加一个字符 ...
- SPOJ COT3.Combat on a tree(博弈论 Trie合并)
题目链接 \(Description\) 给定一棵\(n\)个点的树,每个点是黑色或白色.两个人轮流操作,每次可以选一个白色的点,将它到根节点路径上的所有点染黑.不能操作的人输,求先手是否能赢.如果能 ...
- SPOJ11414 COT3 博弈论 + Trie树合并
考虑对于每个子树从下往上依次考虑 对于叶子节点而言,如果可以染色,那么其\(sg\)值为\(1\),否则为\(0\) 考虑往上合并 如果选择了\(x\),那么后继状态就是其所有子树 如果选了其他子树中 ...
- HY 的惩罚 (Trie 树,博弈论)
[问题描述] hy 抄题解又被老师抓住了,现在老师把他叫到了办公室. 老师要 hy 和他玩一个游 戏.如果 hy 输了,老师就要把他开除信息组; 游戏分为 k 轮.在游戏开始之前,老师会将 n 个由英 ...
- CodeForces 455B A Lot of Games (博弈论)
A Lot of Games 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/J Description Andrew, Fedo ...
- 【10.4校内测试】【轮廓线DP】【中国剩余定理】【Trie树+博弈】
考场上几乎是一看就看出来轮廓线叻...可是调了两个小时打死也过不了手出样例!std发下来一对,特判对的啊,转移对的啊,$dp$数组竟然没有取max!!! 某位考生当场死亡. 结果下午又请了诸位dala ...
- 【基础操作】博弈论 / SG 函数详解
博弈死我了……(话说哪个小学生会玩博弈论提到的这类弱智游戏,还取石子) 先推荐两个文章链接:浅谈算法——博弈论(从零开始的博弈论) 博弈论相关知识及其应用 This article was updat ...
- 数据结构 | 30行代码,手把手带你实现Trie树
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是算法和数据结构专题的第28篇文章,我们一起来聊聊一个经典的字符串处理数据结构--Trie. 在之前的4篇文章当中我们介绍了关于博弈论的 ...
随机推荐
- 【python小随笔】字典的使用
字典也是 Python 提供的一种常用的数据结构,它用于存放具有映射关系的数据. 比如有份成绩表数据,语文:79,数学:80,英语:92,这组数据看上去像两个列表,但这两个列表的元素之间有一定的关联关 ...
- Flex 布局——语法属性详解
前言 Flexbox 是 flexible box 的简称(注:意思是“灵活的盒子容器”),是 CSS3 引入的新的布局模式.它决定了元素如何在页面上排列,使它们能在不同的屏幕尺寸和设备下可预测地展现 ...
- github仓库添加MIT许可
俩种方法 1.新建仓库 直接在选择添加即可如下图: 2.为已创建仓库后添加MIT协议 直接在给工程根目录添加LICENSE文件提交即可,内容是 MIT License Copyright (c) 年份 ...
- git分支的创建、删除、切换、合并
需求背景 开发新功能和修改bug一般放在新建分支,如果觉得可行,可以合并到master分支上. 方式 1.查看分支 git branch (查看本地分支及当前所属分支) git branch -a ( ...
- Python+Django+ansible playbook自动化运维项目实战☝☝☝
Python+Django+ansible playbook自动化运维项目实战☝☝☝ 一.入门引导 DevOPSDevOps(英文Development和Operations的组合)是一组过程.方法 ...
- maven更新慢,改用国内镜像地址
方法很简单: 在 maven根目录 > conf > settings.xml 中 <mirrors>里添加以下子节点: <mirror> <id>al ...
- django html母版
08.12自我总结 django母版 一.母版写的格式 在需要导入的地方写 {% block 名字定义 %} {% endblock %} 二.导入模板 {% extends 'FUCK.html' ...
- Linux提权中常见命令大全
在拿到一个 webshell 之后,大家首先会想到去把自己的权限提升到最高,windows 我们会提升到 SYSTEM 权限,而 Linux 我们会提升到 root 权限,拿在进行 Linux 提权的 ...
- java集合之Vector向量基础
Vector向量: vector类似动态数组,向量和数组类似,但是数组容量一旦确定不可更改,而向量的容量可变.向量只可以保存任何类型对象且容量不限制,数组对元素类型无限制但是容量有限. 适用场合:向量 ...
- 利用requests和BeautifulSoup爬取菜鸟教程的代码与图片并保存为markdown格式
还是设计模式的开卷考试,我想要多准备一点资料,于是写了个爬虫爬取代码与图片,有巧妙地进行格式化进一步处理,最终变为了markdown的格式 import requests from bs4 impor ...