Paper慢慢读 - AB实验人群定向 Recursive Partitioning for Heterogeneous Casual Effects
这篇是treatment effect估计相关的论文系列第一篇所以会啰嗦一点多给出点背景。
论文
Athey, S., and Imbens, G. 2016. Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of
Sciences.
背景
论文给出基于决策树估计实验对不同用户的不同影响。并提出Honest,variance Penalty算法旨在改进CART在tree growth过程中的过拟合问题。
我们举个例子:科研人员想衡量一种新的降血压药对病人的效果,发现服药的患者有些血压降低但有些血压升高。于是问题可以抽象成我们希望预测降压药会对哪些病人有效?相似的问题经常出现在经济,政治决策,医疗研究以及当下的互联网AB测试中。
Treatment effect之所以比通常的预测问题要更难解决,因为groud-truth在现实中是无法直接观测到的,一个人在同一时刻要么吃药要不么吃药,所以你永远无法知道吃药的人要是没吃药血压会不会也降低,或者没吃药的人要是吃了药血压会不会降低。
既然个体的treatment effect无法估计,只能退而求其次去估计群体的treatment effect- ATE (Average treatment effect),既全部用户中(服药效果- 未服药效果)。 但是当出现个体效果差异时ATE无法反应局部效果(E.g.样本稀释)。这时我们需要估计相似群体的treatment effect-CATE(Conditional average treatment effect)
用数学抽象一下上述问题:
\[
\begin{align}
& {(X_i, Y_i,T_i): X_i \in X} \\
& \text{where X是特征,Y是Response,T是AB实验分组}\\
&T_i \in {0,1} \quad \\
&Y_i = \begin{cases}
Y(1) & \quad T_i = 0\\
Y(0) & \quad T_i = 1\\
\end{cases}\\
&CATE: \tau(x) = E(Y_i(1)-Y_i(0)|X=x)\\
\end{align}
\]
模型
这里寻找相似用户的方式是通过决策树。树相较线性模型的优点毫无疑问是它对特征类型的兼容,尤其考虑到实际情况中会存在大量离散特征如性别,地域等等。
那究竟怎样grow tree来找到局部用户群, 取决于cost function的定义。一般决策/回归树是对Y的拟合例如RMSE,或者cross-entropy等等。这里作者选择最大化\(Y(1)-Y(0)\)作为cost Function, 既我们通过树划分出的局部人群可以实现局部实验效果最大化(正向或负向)。 cost function 如下:
\[
\begin{align}
&S_l = {(X_i, Y_i,T_i): X_i \in X_l} \quad \text{叶节点-局部样本}\\
&\hat{\mu_t}(S_l) = \frac{1}{N_{l,t}}\sum_{T_i=t, i \in S_l}Y_i \quad \text{AB组Y的均值} \\
&\hat{\tau}(S_l) = \hat{\mu_1}(S_l) -\hat{\mu_0}(S_l) \quad \text{叶节点CATE}\\
&F(S_l) = N_l * \hat{\tau}^2(S_l)\\
& \text{cost fucntion}: max \sum_{i=1}^L F(S_i)\\
\end{align}
\]
熟悉决策树的朋友也就知道后续split criterion就是去寻找最大化CATE增长的特征和阈值。对决策树不太睡的朋友可以来我之前的博客看看Tree-Decision Tree with Sklearn source code
模型优化
决策树最大的问题就是过拟合,因为每一次split都一定可以带来Information Gain。这里就涉及到ML里最经典的Bias-variance trade off。树划分的节点越小,对样本的估计偏差(Bias)越小但方差(Variance)越大。
传统决策树一般通过几个方法来解决过拟合的问题:
- cross-validation来确定树深度
- min_leaf, min_split_gain 用叶节点的最小样本量等参数来停止growth
作者在文章中给出另外两种解决过拟合的方法:
- Honest approach
- Variance Penalty
Honest approach是把训练样本分成train和est两部分,用train来训练模型用est来给出每个叶节点的估计
Variance Penaly则是直接把叶节点的方差加到cost function中,最终的cost function如下:
\[
F(S_l) = N_l * \hat{\tau}^2(S_l) - N_l(\frac{Var(S_{l,1})}{p} + \frac{Var(S_{l,0})}{1-p}))
\]
文章大概就是这些信息,这个模型当前还没找到很好的工程实现,在Uber的Casualml项目中是正在开发中的Enhancement
其他相关模型详见AB实验的高端玩法系列1-实用HTE论文GitHub收藏
欢迎留言~
Paper慢慢读 - AB实验人群定向 Recursive Partitioning for Heterogeneous Casual Effects的更多相关文章
- Paper慢慢读 - AB实验人群定向 Learning Triggers for Heterogeneous Treatment Effects
这篇论文是在 Recursive Partitioning for Heterogeneous Casual Effects 的基础上加入了两个新元素: Trigger:对不同群体的treatment ...
- Paper慢慢读 - AB实验人群定向 Double Machine Learning
Hetergeneous Treatment Effect旨在量化实验对不同人群的差异影响,进而通过人群定向/数值策略的方式进行差异化实验,或者对实验进行调整.Double Machine Learn ...
- AB实验人群定向HTE模型5 - Meta Learner
Meta Learner和之前介绍的Casual Tree直接估计模型不同,属于间接估计模型的一种.它并不直接对treatment effect进行建模,而是通过对response effect(ta ...
- AB实验的高端玩法系列4- 实验渗透低?用户未被触达?CACE/LATE
CACE全称Compiler Average Casual Effect或者Local Average Treatment Effect.在观测数据中的应用需要和Instrument Variable ...
- AB实验的高端玩法系列2 - 更敏感的AB实验, CUPED!
背景 AB实验可谓是互联网公司进行产品迭代增加用户粘性的大杀器.但人们对AB实验的应用往往只停留在开实验算P值,然后let it go...let it go ... 让我们把AB实验的结果简单的拆解 ...
- AB实验的高端玩法系列3 - AB组不随机?观测试验?Propensity Score
背景 都说随机是AB实验的核心,为什么随机这么重要呢?有人说因为随机所以AB组整体不存在差异,这样才能准确估计实验效果(ATE) \[ ATE = E(Y_t(1) - Y_c(0)) \] 那究竟随 ...
- 滴滴数据驱动利器:AB实验之分组提效
桔妹导读:在各大互联网公司都提倡数据驱动的今天,AB实验是我们进行决策分析的一个重要利器.一次实验过程会包含多个环节,今天主要给大家分享滴滴实验平台在分组环节推出的一种提升分组均匀性的新方法.本文首先 ...
- 为什么在数据驱动的路上,AB 实验值得信赖?
在线AB实验成为当今互联网公司中必不可少的数据驱动的工具,很多公司把自己的应用来做一次AB实验作为数据驱动的试金石. 文 | 松宝 来自 字节跳动数据平台团队增长平台 在线AB实验成为当今互联网公司中 ...
- 关于MySQL幻读的实验
该实验基于 CentOS 7 + MySQL 5.7 进行 打开两个窗口连接到MySQL 第一个连接的事务我们命名为 T1 第二个连接的事务我们命名为 T2 T2 发生在 T1 的 O1 操作结束以 ...
随机推荐
- 第二个视频作品《[SpringCloudAlibaba]微服务之注册中心nacos》上线了
1.场景描述 第二个视频作品出炉了,<[SpringCloudAlibaba]微服务之注册中心nacos>上线了,有需要的朋友可以直接点击链接观看.(如需购买,请通过本文链接购买) 2. ...
- 带你揭秘Shiro(一)
提到Shiro,不得不先介绍RBAC介绍 RBAC介绍: RBAC是基于角色的访问控制(Role-Based Access Control )在 RBAC 中,权限与角色相关联,用户通过成为适当角色的 ...
- Laravel Validator
Controller use Validator; public function Validators(){ $rules = [ 'title' => 'required|max:255', ...
- [转]UIPath进阶教程-6. Architecture & Publishing flow
本文转自:https://blog.csdn.net/liaohenchen/article/details/88847597 版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议, ...
- idea开发时springboot项目时的自动编译和热部署
前提:最好将idea的启动器设置一下 操作:1.file > Build,Execution,Deployment > Compiler 勾选 Build project automati ...
- hadoop搭建的前期准备
这个hadoop的搭建是以比赛前的练习为目的的,所以我直接以root用户来搭建hadoop,主要也是方便我自己以后复习用的 需要的软件:vmware15.5,xshell6,xftp6,jdk Lin ...
- 运维工程师必会工具(Nmap和TCPdump)
1.NMap工具 主要功能:探测主机是否在线.扫描主机开放端口和嗅探网络服务,用于网络探测和安全扫描. NMap支持很多扫描技术,例如:UDP.TCPconnect().TCPSYN(半开扫描).ft ...
- tomcat启停脚本
脚本存放目录 /etc/init.d/ #!/bin/bash # description: Tomcat8 Start Stop Restart # processname: tomcat8 # c ...
- JVM基础回顾记录(二):垃圾收集
垃圾收集流程&HotSpot对该流程的实现方式 上一篇介绍了jvm的内存模型,本篇将介绍虚拟机中最为复杂的一部分:垃圾收集,本篇会从垃圾回收前的准备工作到后面的收集阶段的方式以及HotSpot ...
- 如何使用终端默认情况下阻止Mac应用保存到iCloud
当您保存要在Mac上的Pages,Numbers,TextEdit或其他基于云的应用程序中处理的文档时,该保存的默认位置是iCloud.尽管这对某些人或某些文档来说可能是一件好事,但您可能会厌倦每次更 ...