[Mathematics][MIT 18.03] Proof of a Theory about the Solution to Second-order Linear Homogeneous Differential Equation
At first, I'd like to say thank you to MIT open courses which give me the privilege to enjoy the most outstanding education resources.
Okay, come to the point. When I was learning the second-order homogeneous differential equation, the professor quoted a theory in one step to prove that ${c_{1}y_{1}+c_{2}y_{2}}$ are all the solutions.
THM: if $y_{1},y_{2}$ are solu's to ODE, then either $W(y_{1},y_{2}) = 0$ (i.e. for all x) or$W(y_{1},y_{2}) is nonzero$ (i.e. for all x).
note: W means Wronskian
Well, frankly speaking, I got the inspiration from that introduction in wiki too.
[Mathematics][MIT 18.03] Proof of a Theory about the Solution to Second-order Linear Homogeneous Differential Equation的更多相关文章
- [Mathematics][MIT 18.03] Detailed Explanation of the Frequency Problems in Second-Order Differential Equation of Oscillation System
Well, to begin with, I'd like to say thank you to MIT open courses twice. It's their generosity that ...
- [Mathematics][MIT 18.02]Detailed discussions about 2-D and 3-D integral and their connections
Since it is just a sort of discussion, I will just give the formula and condition without proving th ...
- PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)
前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...
- Docker 18.03 Centos7.6 安装 内网
首先访问https://download.docker.com/linux/centos/7/x86_64/stable/Packages/获取对应版本的rpm包docker包docker-ce-18 ...
- 18/03/18 04:53:44 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
1:遇到这个问题是在启动bin/spark-shell以后,然后呢,执行spark实现wordcount的例子的时候出现错误了,如: scala> sc.textFile()).reduceBy ...
- windows的docker开始支持linux的镜像 ,Version 18.03.0-ce-win59 (16762)
LCOW containers can now be run next to Windows containers.Use '--platform=linux' in Windows containe ...
- [MIT 18.06 线性代数]Intordution to Vectors向量初体验
目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...
- Docker 18.03导入导出
docker中分容器和镜像,简单可以理解为容器是运行中的实例,镜像是运行实例所需的静态文件. 导入导出既可以对容器做操作,也可以对镜像做操作.区别在于镜像可以随时导出,容器必须要停止之后才可以导出,否 ...
- 布客·ApacheCN 翻译/校对/笔记整理活动进度公告 2020.1
注意 请贡献者查看参与方式,然后直接在 ISSUE 中认领. 翻译/校对三个文档就可以申请当负责人,我们会把你拉进合伙人群.翻译/校对五个文档的贡献者,可以申请实习证明. 请私聊片刻(52981514 ...
随机推荐
- Delphi - cxGrid添加DB Banded Table
cxGrid添加DB Banded Table 添加操作 1:单击cxGrid Customize... ; 2:右击cxGridLevel1,选择DB Banded Table. 属性设置: 1 ...
- view生命周期
- E-triples II_2019牛客暑期多校训练营(第四场)
求用n个3的倍数的数按位或出数字a的方案数有多少种(0也算3的倍数) 题解 若数b的每个二进制位上的1,在a中也为1,则称b为a的子集 容易知道任意个a的子集按位或出来的结果还是a的子集 若问题改为按 ...
- P3705 [SDOI2017]新生舞会 分数规划 费用流
#include <algorithm> #include <iterator> #include <iostream> #include <cstring& ...
- “玲珑杯”ACM比赛 Round #18 C -- 图论你先敲完模板(和题目一点关系都没有,dp)
题目链接:http://www.ifrog.cc/acm/problem/1146?contest=1020&no=2 题解:显然知道这是一道dp而且 dp[i]=min(dp[j]+2^(x ...
- 解决hql无法使用mysql方法的问题——以date_add()为例
一.前言 最近在做一个定时任务,具体为定时清理掉mysql中存储的,一个月前的数据.而在hql语句中,就需要调用mysql的date_add()方法. 但是在hibernate中,是不允许使用各个SQ ...
- DAX 第八篇:表连接
表连接是指两张表根据关联字段,组合成一个数据集.表连接不仅可以利用数据模型中已有的关系,而且可以利用DAX表达式基于表的任意列定义连接条件.因此,在DAX中,实现表与表之间的连接,有两种方式: 第一种 ...
- eclipse中SpringBoot的maven项目出现无法解析父类的解决办法
在eclipse中建立SpringBoot的maven项目时,继承父类,添加如下代码: <parent> <groupId>org.springframework.boot&l ...
- SQL Server2008 inner join多种方式的实践
这些天的学习,才发现自己对SQL原来是如此的不了解.之前一直以为自己轻松应对各种复杂的SQL查询,但是一旦提到效率上,可能就比较傻眼了,有时候也会埋怨客户的服务器不好使. 至于Inner Join的三 ...
- C# Post Get 方式发送请求
httpPost 方式发送请求 不带参数 /// <summary> /// 没有参数的post请求 /// </summary> public void HttpPostNo ...