Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent. 

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.

Input

The input file will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible.

Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".

Sample Input

3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar 3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar 0

Sample Output

Case 1: Yes
Case 2: No

题解:

这题是寻找是否存在一种钱币使得交换一圈后可以盈利。就是以任意为起点,找一个终点使得d[i][j]*d[j][i]>1.0即可;

就是Folyd处理,然后判断即可,水题;

AC代码为:

//水题,乘法最短路,格式真的。。。 

#include<bits/stdc++.h>

using namespace std;

double val,dis[50][50];

int n,m,temp,Cas=1;

map<string,int> mp;

void Floyd()

{

    for(int k=1;k<=n;k++)

    {

        for(int i=1;i<=n;i++)

        {

            for(int j=1;j<=n;j++)

                dis[i][j]=max(dis[i][j],dis[i][k]*dis[k][j]);

        }

    }

}

int main()

{

    ios::sync_with_stdio(false);

    while(cin>>n , n)

    {   

        string s1,s2;

        temp=1; mp.clear();

        memset(dis,0,sizeof dis);

        for(int i=1;i<=n;i++) 

        {

            cin>>s1;

            mp[s1]=temp++;

        }

        cin>>m;

        for(int i=1;i<=m;i++)

        {

            cin>>s1>>val>>s2;

            dis[mp[s1]][mp[s2]]=val;    

        }

        if(n==1 && dis[1][1]>1.0) 

        {

            cout<<"Case "<<Cas++<<": "<<"Yes"<<endl;

            //cout<<endl;

            continue;   

        }

        Floyd();

        bool flag=false;

        for(int i=1;i<=n;i++)

        {

            for(int j=1;j<=n;j++)

                if(i==j) continue;

                else if(dis[i][j]*dis[j][i]>1.0)

                {

                    flag=true;

                    break;

                }

            if(flag) break;

        }

        if(flag)  cout<<"Case "<<Cas++<<": "<<"Yes"<<endl;

        else  cout<<"Case "<<Cas++<<": "<<"No"<<endl;

        //cout<<endl;

    }

    

    return 0;

}

HDU1217-Arbitrage(乘法最短路)的更多相关文章

  1. [ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)

    Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to tr ...

  2. HDOJ 1217 Arbitrage (最短路)

    题意:每两种货币之间都有不同的汇率  如果换回自己最后是赚的 输出Yes 否则是No 因为最多只有三十种货币 所以用Floyd是可行的 与一般的最短路板子不同的地方 汇率是要乘而不是加 如果乘上一个小 ...

  3. HDOJ 1217 Arbitrage(拟最短路,floyd算法)

    Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  4. hdu1217 Arbitrage

    Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform on ...

  5. HDU1217:Arbitrage(SPFA)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1217 题目大意 在每种钱币间进行各种交换,最后换回自己如果能赚,那么就Yes,否则No 注意应为有负权 ...

  6. 洛谷P3237 米特运输 [HNOI2014] hash/二进制分解

    正解:hash/二进制分解 解题报告: 传送门! umm首先提取下题意趴QAQ 大概是说给一棵树,每个点有一个权值,要求修改一些点的权值,使得同一个父亲的儿子权值相同,且父亲的权值必须是所有儿子权值之 ...

  7. DFS判断正环

    hdu1217 Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. 最短路(Floyd_Warshall) POJ 2240 Arbitrage

    题目传送门 /* 最短路:Floyd模板题 只要把+改为*就ok了,热闹后判断d[i][i]是否大于1 文件输入的ONLINE_JUDGE少写了个_,WA了N遍:) */ #include <c ...

  9. POJ 2240 Arbitrage(最短路 套汇)

    题意  给你n种币种之间的汇率关系  推断是否能形成套汇现象  即某币种多次换为其他币种再换回来结果比原来多 基础的最短路  仅仅是加号换为了乘号 #include<cstdio> #in ...

随机推荐

  1. Convolutional Sequence to Sequence Learning 论文笔记

    目录 简介 模型结构 Position Embeddings GLU or GRU Convolutional Block Structure Multi-step Attention Normali ...

  2. element 动态合并表格

    前言 element 官方的例子太简单了,不满足实际的需求 数据肯定是动态的,合并的行数,列数都是动态的,该如何知道每一行的合并数呢 需求 动态合并表格,数据来源于数据库 正文 一开始,我的数据源是单 ...

  3. T-SQL Part IX, PIVOT and UNPIVOT

    不同于CROSS JOIN, CROSS APPLY, OUTER APPLY,MSDN文档对PIVOT和UNPIVOT 想得重视了一点,单独做了一个页面来介绍. 简单来说,PIVOT用来把行转成列, ...

  4. 爬虫多线程模板,xpath,etree

    class QuiShi: def __init__(self): self.temp_url = "http://www.lovehhy.net/Joke/Detail/QSBK/{0}& ...

  5. React组件间的通讯

    组件化开发应该是React核心功能之一,组件之间的通讯也是我们做React开发必要掌握的技能.接下来我们将从组件之间的关系来分解组件间如何传递数据. 1.父组件向子组件传递数据 通讯是单向的,数据必须 ...

  6. 力扣(LeetCode)整数反转 个人题解

    给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 输出: ...

  7. gRPC asp.net core自定义策略认证

    在GitHub上有个项目,本来是作为自己研究学习.net core的Demo,没想到很多同学在看,还给了很多星,所以觉得应该升成3.0,整理一下,写成博分享给学习.net core的同学们. 项目名称 ...

  8. 做为GPU服务器管理员,当其他用户需要执行某个要root权限的命令时,除了告诉他们root密码,还有没有别的办法?

    通常一台GPU服务器(这里指linux系统)不可能只有一个帐号能用的,比如当其他用户想要在GPU服务器上安装一些软件的时候,会需要用到apt-get命令,但是apt-get命令需要root用户的操作权 ...

  9. 小白学 Python 爬虫(9):爬虫基础

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  10. [ch04-01] 用最小二乘法解决线性回归问题

    系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 4.1 最小二乘法 4.1.1 历史 最小二乘法,也叫做 ...