题目传送门

题意:
在一幅图中, 问需要使得多少条边加一,使得最小生成树只有一种方案。

题解:
Kruskal,
sort完之后,
对于相通的一个边权w,我们可以分析出来有多少边是可以被放到图里面的,
然后我们再开始加边,
最后 多余的边就是 可以被放进去的 - 加进去的边。

代码:

/*
code by: zstu wxk
time: 2019/01/28
*/
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 2e5 + ;
int Wa(){return rand()%;}
void Hack(int n){srand(time());int hack = ;for(int j = ; j <= n; ++j)hack += Wa();if(hack == n)puts("OH No!");}
int n, m;
struct Node{
int u, v, w;
bool operator < (const Node & x) const{
return w < x.w;
}
}e[N];
int pre[N];
void init(){
for(int i = ; i <= n; ++i)
pre[i] = i;
}
int Find(int x){
if(x == pre[x]) return x;
return pre[x] = Find(pre[x]);
}
void Ac(){
int u, v, w;
for(int i = ; i <= m; ++i)
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
sort(e+, e++m);
int ans = ;
for(int i = ; i <= m; ){
int j = i+;
while(e[i].w == e[j].w) ++j;
for(int k = i; k < j; ++k)
if(Find(e[k].u) != Find(e[k].v)) ++ans;
for(int k = i; k < j; ++k){
if(Find(e[k].u) != Find(e[k].v)){
pre[Find(e[k].u)] = Find(e[k].v);
--ans;
}
}
i = j;
}
printf("%d\n", ans);
}
int main(){
while(~scanf("%d%d", &n, &m)){
init();
Ac();
}
return ;
}

CF - 1108 F MST Unification的更多相关文章

  1. CF F. MST Unification (最小生成树避圈法)

    题意 给一个无向加权联通图,没有重边和环.在这个图中可能存在多个最小生成树(MST),你可以进行以下操作:选择某条边使其权值加一,使得MST权值不变且唯一.求最少的操作次数. 分系:首先我们先要知道为 ...

  2. (F. MST Unification)最小生成树

    题目链接:http://codeforces.com/contest/1108/problem/F 题目大意:给你n个点和m条边,然后让你进行一些操作使得这个图的最小生成树唯一,每次的操作是给某一条边 ...

  3. Codeforces 1108F MST Unification MST + LCA

    Codeforces 1108F MST + LCA F. MST Unification Description: You are given an undirected weighted conn ...

  4. Codeforces 1108F MST Unification(最小生成树性质)

    题目链接:MST Unification 题意:给定一张连通的无向带权图.存在给边权加一的操作,求最少操作数,使得最小生成树唯一. 题解:最小生成树在算法导论中有这个性质: 把一个连通无向图的生成树边 ...

  5. CF1108F MST Unification

    题目地址:CF1108F MST Unification 最小生成树kruskal算法的应用 只需要在算法上改一点点 当扫描到权值为 \(val\) 的边时,我们将所有权值为 \(val\) 的边分为 ...

  6. CF 633 F. The Chocolate Spree 树形dp

    题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...

  7. CF #271 F Ant colony 树

    题目链接:http://codeforces.com/contest/474/problem/F 一个数组,每一次询问一个区间中有多少个数字可以整除其他所有区间内的数字. 能够整除其他所有数字的数一定 ...

  8. CF 494 F. Abbreviation(动态规划)

    题目链接:[http://codeforces.com/contest/1003/problem/F] 题意:给出一个n字符串,这些字符串按顺序组成一个文本,字符串之间用空格隔开,文本的大小是字母+空 ...

  9. CF 1138 F. Cooperative Game

    F. Cooperative Game 链接 题意: 有10个玩家,开始所有玩家在home处,每次可以让一些玩家沿着边前进一步,要求在3(t+c)步以内,到达终点. 分析: 很有意思的一道题.我们构造 ...

随机推荐

  1. istio使用教程

    kubernetes各版本离线安装包 安装 安装k8s 强势插播广告 三步安装,不多说 安装helm, 推荐生产环境用helm安装,可以调参 release地址 如我使用的2.9.1版本 yum in ...

  2. SQL Server 插入数据时自增长列如何指定数值

    SQL Server 表在导入数据时,有时需要将自增长列指定数值,来保证导入前后的数据完全一致,如何实现? SQL Server 提供了方法: SET IDENTITY_INSERT,允许将显式值插入 ...

  3. Codeforces Round #192 (Div. 2) (330B) B.Road Construction

    题意: 要在N个城市之间修建道路,使得任意两个城市都可以到达,而且不超过两条路,还有,有些城市之间是不能修建道路的. 思路: 要将N个城市全部相连,刚开始以为是最小生成树的问题,其实就是一道简单的题目 ...

  4. Windows上切换java8和java11

    Windows上安装了java8和java11,时不时要切换,于是思考写行命令解决.思路是修改java_home变量.我的java_home变量是设置在系统级别的. 修改环境变量有2个命令,set和s ...

  5. JDK1.8源码分析03之idea搭建源码阅读环境

    序言:上一节说了阅读源码的顺序,有了一个大体的方向,咱们就知道该如何下手.接下来,就要搭建一个方便阅读源码及debug的环境.有助于跟踪源码的调用情况. 目前新开发的项目, 大多数都是基于JDK1.8 ...

  6. Mybatis获取代理对象

    mybatis-config.xml里标签可以放置多个environment,这里可以切换test和develop数据源 databaseIdProvider提供多种数据库,在xml映射文件里选择da ...

  7. k8s+istio:流量控制之灰度发布

    通过Kubernetes+Istio的流量控制实现灰度发布,主要演示通过流量权重实现蓝绿,通过http自定义头实现金丝雀 准备环境 k8s和istio不想自己装的话可以在云上买个按量付费集群,用完即删 ...

  8. Ant Design Pro 脚手架+umiJS 实践总结

    一.简介 1.Ant Design Pro Ant Design Pro是一款搭建中后台管理控制台的脚手架 ,基于React,dva.js,Ant Design (1)其中dva主要是控制数据流向,是 ...

  9. 基于 WPF 模块化架构下的本地化设计实践

    背景描述 最近接到一个需求,就是要求我们的 WPF 客户端具备本地化功能,实现中英文多语言界面.刚开始接到这个需求,其实我内心是拒绝的的,但是没办法,需求是永无止境的.所以只能想办法解决这个问题. 首 ...

  10. js及jquery常用代码

    1.获取屏幕尺寸 document.documentElement.scrollWidth; document.documentElement.scrollHeight; $(window).widt ...