hdu 1007 Quoit Design 题解
题目大意
查询平面内最近点对的距离,输出距离的一半。
暴力做法
枚举每一个点对的距离直接判断,时间复杂度是 $ O(n^2) $,对于这题来说会超时。
那么我们考虑去优化这一个过程,我们在求距离的过程中其实有很多的计算是没有必要的,比如已经有一个暂时的最小值 $ d $,如果有 $ dis>d $,那么这个 $ dis $ 是没有贡献的,那么我们怎么除去这些不必要的答案呢?
我们可以考虑分治,假设已经求出了两个小区间 $ A , B $ 的最小值,那么合并的大区间 $ C $ 的最小值实际上就是在 $ d=n(A,B) $ 和A,B中的点对构成的距离中取最小值,那么我们可以用上之前的那个优化,对于大于d的我们不去选择,那么就可以缩小我们所需要的计算量,由于鸽巢原理只我们最多只要求36个点对,计算量很小。
然后我就开始敲代码了,一开始的代码是这样的
#include<bits/stdc++.h>
using namespace std;
const int maxn=100010;
const double INF=100000000.0;
struct node{
double x;
double y;
}a[maxn];
int n,tail1,tail2,tmp1[maxn],tmp2[maxn];
double ans;
bool cmp(node i,node j){
return i.x<j.x;
}
double dis(int i,int j){
double ans=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
return ans;
}
double clu(int l,int r){
if(l==r) return INF;
int mid=(l+r)>>1;
double d=min(clu(l,mid),clu(mid+1,r));
tail1=0;tail2=0;
for(int i=mid;i>=l&&a[mid].x-a[i].x<d;--i) tmp1[++tail1]=i;
for(int i=mid+1;i<=r&&a[i].x-a[mid].x<d;++i) tmp2[++tail2]=i;
for(int i=1;i<=tail1;++i){
for(int j=1;j<=tail2;++j){
double k=dis(tmp1[i],tmp2[j]);
if(d>k&&tmp1[i]!=tmp2[j]) d=k;
}
}
return d;
}
int main(){
scanf("%d",&n);
while(n){
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i){
scanf("%lf %lf",&a[i].x,&a[i].y);
}
sort(a+1,a+1+n,cmp);
ans=clu(1,n)/2.0;
printf("%.2lf\n",ans);
scanf("%d",&n);
}
return 0;
}
然后时间超限,(雾
后面发现问题出在我只判断了x是否大于d,但对于y并没有去进行判断,这就导致时间复杂度还是很高,其实只要对y进行排序再剪枝便可AC
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=100010;
const double INF=100000000.0;
struct node{
double x;
double y;
}a[maxn];
int n,tail,tmp[maxn];
double ans;
bool cmp1(node i,node j){
return i.x<j.x;
}
bool cmp2(int i,int j){
return a[i].y<a[j].y;
}
double dis(int i,int j){
double ans=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
return ans;
}
double clu(int l,int r){
if(l==r) return INF;
int mid=(l+r)>>1;
double d=min(clu(l,mid),clu(mid+1,r));
tail=0;
for(int i=mid;i>=l&&a[mid].x-a[i].x<d;--i) tmp[++tail]=i;
for(int i=mid+1;i<=r&&a[i].x-a[mid].x<d;++i) tmp[++tail]=i;
sort(tmp+1,tmp+tail+1,cmp2);
for(int i=1;i<=tail;++i){
for(int j=i+1;j<=tail && a[tmp[j]].y-a[tmp[i]].y<d;++j){
double k=dis(tmp[i],tmp[j]);
if(d>k&&tmp[i]!=tmp[j]) d=k;
}
}
return d;
}
int main(){
scanf("%d",&n);
while(n){
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i){
scanf("%lf %lf",&a[i].x,&a[i].y);
}
sort(a+1,a+1+n,cmp1);
ans=clu(1,n)/2.0;
printf("%.2lf\n",ans);
scanf("%d",&n);
}
return 0;
}
可以对照一下这两个代码,关键部分便在于
for(int i=1;i<=tail;++i){
for(int j=i+1;j<=tail && a[tmp[j]].y-a[tmp[i]].y<d;++j){
double k=dis(tmp[i],tmp[j]);
if(d>k&&tmp[i]!=tmp[j]) d=k;
}
}
值得注意的是
a[tmp[j]].y-a[tmp[i]].y<d
必须放在循环的判断条件里,而不可以拖进来,否则仍然超时,原因便在我们对y进行了排序,那么如果 $ a[tmp[j]].y-a[tmp[i]].y>=d $ 那么 $ tmp[k]].y-a[tmp[i]].y>=d , k>j $ 可以达到剪枝的效果。
完结撒花!
hdu 1007 Quoit Design 题解的更多相关文章
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design(分治)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:给出n个点求最短的两点间距离除以2. 题解:简单的分治. 其实分治就和二分很像二分的写df ...
- HDU 1007 Quoit Design 平面内最近点对
http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...
- HDU 1007 Quoit Design
传送门 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Des ...
- Hdoj 1007 Quoit Design 题解
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
随机推荐
- kafka客户端和服务端开发(三)
前面我们已经搭建了kafka的单机和集群环境,分别写了简单的实例代码,对于代码里面使用到的参数并没有做解释.下面我们来详细说一下各个参数的作用. 1. 创建kafka生产者 kafka生产者有3个必选 ...
- Zookeeeper应用实践(四)
zk的应用还是非常广泛的. 1. 分布式锁 单机环境下的锁还是很容易去实现的,但是在分布式环境下一切都变得不是那么简单.zk实现分布式锁的原理还简单,因为在分布式环境中的zk节点的变化会被每一台机器w ...
- Kafka集群配置---Windows版
Kafka是一种高吞吐量的分布式发布订阅的消息队列系统,Kafka对消息进行保存时是通过tipic进行分组的.今天我们仅实现Kafka集群的配置.理论的抽空在聊 前言 最近研究kafka,发现网上很多 ...
- Mysql超详解
Mysql超详解 一.命令框基本操作及连接Mysql 找到Mysql安装路径,查看版本 同时按快捷键win+R会弹出一个框,在框中输入cmd 点击确定后会出现一个黑框,这是命令框,我们的操作要在这命令 ...
- 数据结构与算法—二叉排序树(java)
前言 前面介绍学习的大多是线性表相关的内容,把指针搞懂后其实也没有什么难度.规则相对是简单的. 再数据结构中树.图才是数据结构标志性产物,(线性表大多都现成api可以使用),因为树的难度相比线性表大一 ...
- JavaScript最常见的错误种类
1.报错为: Uncaught ReferenceError:未捕获引用错误(引用错误:使用了没有定义的变量) 错误之前的代码会执行,之后代码不会执行 2.报错为: Uncaught Syntaxer ...
- ECMAScript---数字类型详解
number数字类详解 整数.小数.负数.NaN都是number数字类型的 NaN:not a number ,但是它是数字类型的 isNaN:检测当前值是否 不是有效数字,返回true代表不是有效数 ...
- js 截屏保存图片
html2canvas.js 这个js有个强大的功能,就是能将html 对应的dom生成canvas. 这样,我们就可以通过生成的canvas转化成 base64 图片,从而实现截屏功能: 核心代码如 ...
- Leetcode之二分法专题-374. 猜数字大小(374. Guess Number Higher or Lower)
Leetcode之二分法专题-374. 猜数字大小(374. Guess Number Higher or Lower) 我们正在玩一个猜数字游戏. 游戏规则如下:我从 1 到 n 选择一个数字. 你 ...
- 常用maven整合
常用Maven依赖 rt,常用Maven配置整合,不定期更新 一.dependencies 1.jstl开发环境 <!-- jstl开发环境 --> <!-- https://mvn ...