<更新提示>

<第一次更新>


<正文>

The Counting Problem

Description

求 [L,R]内每个数码出现的次数。

Input Format

若干行,一行两个正整数 L 和 R。

最后一行 L=R=0,表示输入结束。

Output Format

若干行,对于每个询问做出回答,每行 10 个整数,依次表示 0 至 9 出现的次数。

输入的最后一行不属于询问,因此不必对此做出回答。

Sample Input

1 10
114 514
233 666
19260421 19260817
19190504 19890605
0 0

Sample Output

1 2 1 1 1 1 1 1 1 1
80 167 180 180 181 95 80 80 80 80
83 83 150 191 194 194 158 83 83 83
476 475 476 80 159 180 577 180 97 476
350124 1059618 450020 450020 450021 450117 450026 450020 440626 1050224

解析

考虑数位\(dp\),设\(f[i][j][k]\)代表长度为\(i\)的数中,最高位为\(j\),数码\(k\)的出现次数和。以长度作为阶段,可以轻松转移:

\[f[i][j][k]=\sum_{p=0}^9f[i-1][p][k]
\]

当然,对于\(j=k\)的情况,还要加上\(10^{i-1}\),作为最高位数码的贡献。

然后考虑对于一个具体的数值\(x\),求出\(1-x\)的答案。

首先我们可以利用预处理的\(dp\)数组快速得到长度小于\(x\)的长度的答案。然后考虑计算长度等于\(x\)的长度的答案。

从高位到低位枚举,如果当且位小于\(x\)的这一位的话,后面的数字可以随便填,直接累加答案即可,反之累加当前位贡献,继续考虑下一位。

\(Code:\)

#include <bits/stdc++.h>
using namespace std;
const int SIZE = 13;
int cnt,num[SIZE];
long long f[SIZE][10][10],ans[10][2];
inline long long quickpow(long long a,long long b)
{
long long res = 1;
for ( ; b ; a = a * a , b>>=1 )
if ( 1 & b ) res = res * a;
return res;
}
inline void Prepdp(void)
{
for (int i=0;i<=9;i++) f[1][i][i] = 1;
for (int i=2;i<=12;i++)
for (int j=0;j<=9;j++)
{
for (int k=0;k<=9;k++)
for (int l=0;l<=9;l++)
f[i][j][l] += f[i-1][k][l];
f[i][j][j] += quickpow( 10 , i-1 );
}
}
inline void solve(long long x,int id)
{
memset( num , 0 , sizeof num );
cnt = 0; long long y = x;
while ( x ) num[++cnt] = x % 10 , x /= 10;
for (int i=0;i<cnt;i++)
for (int j=1;j<=9;j++)
for (int k=0;k<=9;k++)
ans[k][id] += f[i][j][k];
for (int i=cnt;i>=1;i--)
{
for (int j=0;j<num[i];j++)
{
if ( i == cnt && j == 0 ) continue;
for (int k=0;k<=9;k++)
ans[k][id] += f[i][j][k];
}
ans[num[i]][id] += y % quickpow( 10 , i-1 ) + 1;
}
}
int main(void)
{
Prepdp();
long long a,b;
while ( scanf("%lld%lld",&a,&b) && a && b )
{
solve( a-1 , 0 ) , solve( b , 1 );
for (int i=0;i<=9;i++)
printf("%lld%c",ans[i][1]-ans[i][0]," \n"[i==9]);
memset( ans , 0 , sizeof ans );
}
return 0;
}

<后记>

『The Counting Problem 数位dp』的更多相关文章

  1. UVA - 1640 The Counting Problem (数位dp)

    题意:统计l-r中每种数字出现的次数 很明显的数位dp问题,虽然有更简洁的做法但某人已经习惯了数位dp的风格所以还是选择扬长避短吧(说白了就是菜啊) 从高位向低位走,设状态$(u,lim,ze)$表示 ...

  2. POJ2282:The Counting Problem(数位DP)

    Description Given two integers a and b, we write the numbers between a and b, inclusive, in a list. ...

  3. 『月之谜 数位dp』

    月之谜 Description 打败了Lord lsp 之后,由 于lqr 是一个心地善良的女孩 子,她想净化Lord lsp 黑化的 心,使他变回到原来那个天然 呆的lsp--在倒霉的光之英 雄ap ...

  4. hdu 5106 Bits Problem(数位dp)

    题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...

  5. hiho1259 A Math Problem (数位dp)

    题目链接:http://hihocoder.com/problemset/problem/1259 题目大意:g(t)=(f(i)%k=t)的f(i)的个数 求所有的(0-k-1)的g(i)的异或总值 ...

  6. 哈尔滨工程大学ACM预热赛 G题 A hard problem(数位dp)

    链接:https://ac.nowcoder.com/acm/contest/554/G Now we have a function f(x): int f ( int x ) {     if ( ...

  7. nowcoder A hard problem /// 数位DP

    题目大意: 称一个数x的各个数位之和为f(x) 求区间L R之间 有多少个数x%f(x)==0 #include <bits/stdc++.h> using namespace std; ...

  8. 『最长等差数列 线性DP』

    最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...

  9. 『快乐链覆盖 树形dp』

    快乐链覆盖 Description 给定一棵 n 个点的树,你需要找至多 k 条互不相交的路径,使得它们的长度之和最大 定义两条路径是相交的:当且仅当存在至少一个点,使得这个点在两条路径中都出现 定义 ...

随机推荐

  1. 2019-9-23-win10-uwp-睡眠唤醒

    原文:2019-9-23-win10-uwp-睡眠唤醒 title author date CreateTime categories win10 uwp 睡眠唤醒 lindexi 2019-9-23 ...

  2. Linux网络——配置网络之iproute家族命令

    Linux网络——配置网络之iproute家族命令 摘要:本文主要学习了iproute家族用来配置网络的命令. ip命令 ip命令用于查看和管理IP地址.接口.路由.隧道等.用来取代ifconfig命 ...

  3. Java日期时间API系列1-----Jdk7及以前的日期时间类

    先看一个简单的图: 主要的类有: Date类负责时间的表示,在计算机中,时间的表示是一个较大的概念,现有的系统基本都是利用从1970.1.1 00:00:00 到当前时间的毫秒数进行计时,这个时间称为 ...

  4. Javase之多线程(2)

    多线程(2) 线程的生命周期 新建:创建线程对象 就绪:有执行资格,没有执行权 运行:有资格运行,有执行权 ​ 阻塞:由一些操作让线程处于改状态.没有执行资格,没有执行权,而通过另一些操作激活它,激活 ...

  5. Linux下正确修改Docker镜像和容器的默认存储位置,亲测有效

    我们通过 yum 的方式安装完Docker环境后,它默认的存储位置是 /var/lib/docker,默认的 pid 存放位置是 /var/run/docker.pid. 如果仅仅是做测试,我们可能没 ...

  6. css横屏问题的设置

    <link rel="stylesheet" media="all and (orientation:portrait)" href="css/ ...

  7. SAP MM 特殊库存之T库存初探

    SAP MM 特殊库存之T库存初探 笔者所在的A项目里,销售业务广泛启用了POD功能.VL02N对交货单做了发货过账后物权并没有转移,而是将自有E库存转为一个叫做在途库存的特殊库存里.等到货物到了客户 ...

  8. 0基础入门学习Python(第5章)

    列表,元组和字符串 5.1 列表:一个打了激素的数组 有时候可能需要将一些相互之间有关联的数据保存在一起,这个就叫数组.Python将其称为列表. 5.1.1 创建列表 >>> [1 ...

  9. 控件类——Button、UIControlState状态、title及其属性

    封装: 封装按钮:1.有提示文字 —>UILable 2.并且可以点击 —> UIControl UIButton:是一个按钮(系统已经把UIControl封装好了).  里面可以放文字. ...

  10. springcloud微服务实战:Eureka+Zuul+Ribbon+Hystrix+SpringConfig

    原文地址:http://blog.csdn.net/yp090416/article/details/78017552 springcloud微服务实战:Eureka+Zuul+Ribbon+Hyst ...