树形\(DP\)

考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率。

然后我们就能发现这个东西直接转移是几乎不可能的。

所以我们在转移时要开个辅助数组\(s_{op,x,y,k}\),其中\(op\)用于滚存,表示最长链为\(x\),次长链为\(y\),子节点子树内直径长度小于等于\(k\)的概率。

然后我们只要枚举子节点,再枚举子节点子树内的链长,就可以采用刷表法简便地\(DP\)转移了。

这样看似\(O(n^5)\),但如果你采用了记\(Size\)优化转移上界的方法,根据树上背包的复杂度,这里应该是\(O(n^4)\)的 。

最后我们更新\(f_{x,i,max(i+j,k)}\)加上\(s_{op,i,j,k}-s_{op,i,j,k-1}\)。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 60
#define DB double
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
#define Gmax(x,y) (x<(y)&&(x=(y)))
using namespace std;
int n,ee,lnk[N+5];struct edge {int to,nxt;}e[N<<1];
class DpSolver
{
private:
int g[N+5],l[N+5];DB f[N+5][2*N+5][2*N+5],s[2][2*N+5][2*N+5][2*N+5];
I void DP(CI x,CI lst)
{
RI i,j,k,p,q,op;DB t,v;
for(g[x]=1,i=lnk[x];i;i=e[i].nxt) e[i].to^lst&&(DP(e[i].to,x),g[x]+=g[e[i].to]);//DP子节点
for(i=0;i<=2*g[x];++i) s[0][0][0][i]=1;//初始化
for(op=0,i=lnk[x];i;i=e[i].nxt) if(e[i].to^lst)//枚举子节点
{
for(j=0;j<=l[e[i].to];++j) for(k=1;k<=2*g[x];++k) f[e[i].to][j][k]+=f[e[i].to][j][k-1];//处理前缀和,方便转移
for(op^=1,j=0;j<=l[x];++j) for(k=0;k<=j;++k) for(p=0;p<=2*g[x];++p)//枚举当前状态
{
t=s[op^1][j][k][p],s[op^1][j][k][p]=0;//记下当前状态,注意清空原先数组
for(q=0;q<=l[e[i].to];++q) v=0.5*t*f[e[i].to][q][p],//枚举子树内最长链
q+1>j?(s[op][q+1][j][p]+=v):(q+1>k?s[op][j][q+1][p]+=v:s[op][j][k][p]+=v),//如果这条边长度为1
q+2>j?(s[op][q+2][j][p]+=v):(q+2>k?s[op][j][q+2][p]+=v:s[op][j][k][p]+=v);//如果这条边长度为2
}Gmax(l[x],l[e[i].to]+2);
}
for(i=0;i<=l[x];++i) for(j=0;j<=i;++j) for(k=2*g[x];~k;--k)//枚举状态
f[x][i][max(i+j,k)]+=s[op][i][j][k]-(k?s[op][i][j][k-1]:0),s[op][i][j][k]=0;//将状态更新到f数组中,并清空
}
public:
I void Solve()
{
RI i,j;DB ans=0;DP(1,0);//树形DP
for(i=0;i<=l[1];++i) for(j=i;j<=2*g[1];++j) ans+=f[1][i][j]*j;//统计答案
printf("%.8lf",ans);//输出答案
}
}D;
int main()
{
freopen("tree.in","r",stdin),freopen("tree.out","w",stdout);
RI i,x,y;for(scanf("%d",&n),i=1;i^n;++i) scanf("%d%d",&x,&y),add(x,y),add(y,x);//读入建边
return D.Solve(),0;
}

【2019.8.20 NOIP模拟赛 T2】小B的树(tree)(树形DP)的更多相关文章

  1. 【2019.7.20 NOIP模拟赛 T2】B(B)(数位DP)

    数位\(DP\) 首先考虑二进制数\(G(i)\)的一些性质: \(G(i)\)不可能有连续两位第\(x\)位和第\(x+1\)位都是\(1\).因为这样就可以进位到第\(x+2\)位.其余情况下,这 ...

  2. 【2019.7.15 NOIP模拟赛 T2】与非树(nand)(树形DP)

    树形\(DP\) 实际上,这道题应该不是很难. 我们设\(f_{x,i,j}\)表示在以\(x\)为根的子树内,原本应输出\(i\),结果输出了\(j\)的情况数. 转移时,为了方便,我们先考虑与,再 ...

  3. 【2019.8.20 NOIP模拟赛 T3】小X的图(history)(可持久化并查集)

    可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作, ...

  4. 【2019.7.20 NOIP模拟赛 T1】A(A)(暴搜)

    打表+暴搜 这道题目,显然是需要打表的,不过打表的方式可以有很多. 我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒. 然后 ...

  5. 【2019.7.16 NOIP模拟赛 T2】折叠(fold)(动态规划)

    暴力\(DP\) 考虑暴力\(DP\),我们设\(f_{i,j}\)表示当前覆盖长度为\(i\),上一次折叠长度为\(j\)的方案数. 转移时需要再枚举这次的折叠长度\(k\)(\(k\ge j\)) ...

  6. 【2019.8.6 慈溪模拟赛 T2】树上路径(tree)(Trie)

    从暴力考虑转化题意 考虑最暴力的做法,我们枚举路径的两端,然后采用类似求树上路径长度的做法,计算两点到根的贡献,然后除去\(LCA\)到根的贡献两次. 即,设\(v_i\)为\(i\)到根路径上的边权 ...

  7. 2019.7.26 NOIP 模拟赛

    这次模拟赛真的,,卡常赛. The solution of T1: std是打表,,考场上sb想自己改进匈牙利然后wei了(好像匈牙利是错的. 大力剪枝搜索.代码不放了. 这是什么神仙D1T1,爆蛋T ...

  8. 20161003 NOIP 模拟赛 T2 解题报告

    Weed duyege的电脑上面已经长草了,经过辨认上面有金坷垃的痕迹. 为了查出真相,duyege 准备修好电脑之后再进行一次金坷垃的模拟实验. 电脑上面有若干层金坷垃,每次只能在上面撒上一层高度为 ...

  9. 2018.02.12 noip模拟赛T2

    二兵的赌注 Description游戏中,二兵要进入了一家奇怪的赌场.赌场中有n个庄家,每个庄家都可以猜大猜小,猜一次一元钱.每一次开彩前,你都可以到任意个庄家那里下赌注.如果开彩结果是大,你就可以得 ...

随机推荐

  1. js-07-事件

    一.js事件绑定在对象上的三种方法 a:将事件绑定在元素标签的属性上 <h3 onclick="console.log('奥特曼打怪兽')">海绵宝宝历险记</h ...

  2. Ali 访问控制 RAM 用户身份

    Ali 访问控制 RAM 用户身份 2018/11/13 Chenxin 参考: https://help.aliyun.com/product/28625.html?spm=a2c4g.111866 ...

  3. Java8_map新增方法

    参考博客 https://irusist.github.io/2016/01/04/Java-8%E4%B9%8BMap%E6%96%B0%E5%A2%9E%E6%96%B9%E6%B3%95/#ge ...

  4. 5面终于拿到了字节跳动offer! 鬼知道我经历了啥...

    坐标北京,某211本科毕业生,之前学校活动有去过字节跳动公司总部参观,所以一直以来就蛮想进入字节工作的,被字节的企业文化和工作氛围所影响.字节作为发展速度最快的互联网公司,旗下的很多产品的用户都比肩B ...

  5. 如何在动态链接库dll/so中导出自定义的模板类template class | how to implement a template class with c++ and export in dll/so

    本文首发于个人博客https://kezunlin.me/post/4ec4ae49/,欢迎阅读最新内容! how to implement a template class with c++ and ...

  6. css样式优先级计算规则

    css样式的优先级分为引入优先级和声明优先级. 引入优先级 引入样式一般分为外部样式,内部样式,内联样式. 外部样式:使用link引入的外部css文件. 内部样式:使用style标签书写的css样式. ...

  7. 一起学Android之Xml与Json解析

    概述 在网络中,数据交互通常是以XML和Json的格式进行,所以对这两种格式的数据进行解析,是Android开发中的必备功能,本文以一个简单的小例子,简述Android开发中Xml和Json解析的常用 ...

  8. .net core 2.1 基于Jwt的登录认证

    1.新建一个.net core2.1 基于 api 的工程,引用Microsoft.AspNetCore.Authentication.JwtBearer 包 2.新建一个Token的实体类,一个Jw ...

  9. (转)Skyline timeseries异常判定算法

    原文链接:https://jiroujuan.wordpress.com/2013/10/09/skyline-anomalous-detect-algorithms/ Skyline内部提供了9个预 ...

  10. Scrapy框架-中间件

    一.中间件中主要有3个函数方法 process_request:处理请求,默认返回值是None process_response:处理响应,默认返回值是response对象 process_exce ...