【2019.8.20 NOIP模拟赛 T2】小B的树(tree)(树形DP)
树形\(DP\)
考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率。
然后我们就能发现这个东西直接转移是几乎不可能的。
所以我们在转移时要开个辅助数组\(s_{op,x,y,k}\),其中\(op\)用于滚存,表示最长链为\(x\),次长链为\(y\),子节点子树内直径长度小于等于\(k\)的概率。
然后我们只要枚举子节点,再枚举子节点子树内的链长,就可以采用刷表法简便地\(DP\)转移了。
这样看似\(O(n^5)\),但如果你采用了记\(Size\)优化转移上界的方法,根据树上背包的复杂度,这里应该是\(O(n^4)\)的 。
最后我们更新\(f_{x,i,max(i+j,k)}\)加上\(s_{op,i,j,k}-s_{op,i,j,k-1}\)。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 60
#define DB double
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
#define Gmax(x,y) (x<(y)&&(x=(y)))
using namespace std;
int n,ee,lnk[N+5];struct edge {int to,nxt;}e[N<<1];
class DpSolver
{
private:
int g[N+5],l[N+5];DB f[N+5][2*N+5][2*N+5],s[2][2*N+5][2*N+5][2*N+5];
I void DP(CI x,CI lst)
{
RI i,j,k,p,q,op;DB t,v;
for(g[x]=1,i=lnk[x];i;i=e[i].nxt) e[i].to^lst&&(DP(e[i].to,x),g[x]+=g[e[i].to]);//DP子节点
for(i=0;i<=2*g[x];++i) s[0][0][0][i]=1;//初始化
for(op=0,i=lnk[x];i;i=e[i].nxt) if(e[i].to^lst)//枚举子节点
{
for(j=0;j<=l[e[i].to];++j) for(k=1;k<=2*g[x];++k) f[e[i].to][j][k]+=f[e[i].to][j][k-1];//处理前缀和,方便转移
for(op^=1,j=0;j<=l[x];++j) for(k=0;k<=j;++k) for(p=0;p<=2*g[x];++p)//枚举当前状态
{
t=s[op^1][j][k][p],s[op^1][j][k][p]=0;//记下当前状态,注意清空原先数组
for(q=0;q<=l[e[i].to];++q) v=0.5*t*f[e[i].to][q][p],//枚举子树内最长链
q+1>j?(s[op][q+1][j][p]+=v):(q+1>k?s[op][j][q+1][p]+=v:s[op][j][k][p]+=v),//如果这条边长度为1
q+2>j?(s[op][q+2][j][p]+=v):(q+2>k?s[op][j][q+2][p]+=v:s[op][j][k][p]+=v);//如果这条边长度为2
}Gmax(l[x],l[e[i].to]+2);
}
for(i=0;i<=l[x];++i) for(j=0;j<=i;++j) for(k=2*g[x];~k;--k)//枚举状态
f[x][i][max(i+j,k)]+=s[op][i][j][k]-(k?s[op][i][j][k-1]:0),s[op][i][j][k]=0;//将状态更新到f数组中,并清空
}
public:
I void Solve()
{
RI i,j;DB ans=0;DP(1,0);//树形DP
for(i=0;i<=l[1];++i) for(j=i;j<=2*g[1];++j) ans+=f[1][i][j]*j;//统计答案
printf("%.8lf",ans);//输出答案
}
}D;
int main()
{
freopen("tree.in","r",stdin),freopen("tree.out","w",stdout);
RI i,x,y;for(scanf("%d",&n),i=1;i^n;++i) scanf("%d%d",&x,&y),add(x,y),add(y,x);//读入建边
return D.Solve(),0;
}
【2019.8.20 NOIP模拟赛 T2】小B的树(tree)(树形DP)的更多相关文章
- 【2019.7.20 NOIP模拟赛 T2】B(B)(数位DP)
数位\(DP\) 首先考虑二进制数\(G(i)\)的一些性质: \(G(i)\)不可能有连续两位第\(x\)位和第\(x+1\)位都是\(1\).因为这样就可以进位到第\(x+2\)位.其余情况下,这 ...
- 【2019.7.15 NOIP模拟赛 T2】与非树(nand)(树形DP)
树形\(DP\) 实际上,这道题应该不是很难. 我们设\(f_{x,i,j}\)表示在以\(x\)为根的子树内,原本应输出\(i\),结果输出了\(j\)的情况数. 转移时,为了方便,我们先考虑与,再 ...
- 【2019.8.20 NOIP模拟赛 T3】小X的图(history)(可持久化并查集)
可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作, ...
- 【2019.7.20 NOIP模拟赛 T1】A(A)(暴搜)
打表+暴搜 这道题目,显然是需要打表的,不过打表的方式可以有很多. 我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒. 然后 ...
- 【2019.7.16 NOIP模拟赛 T2】折叠(fold)(动态规划)
暴力\(DP\) 考虑暴力\(DP\),我们设\(f_{i,j}\)表示当前覆盖长度为\(i\),上一次折叠长度为\(j\)的方案数. 转移时需要再枚举这次的折叠长度\(k\)(\(k\ge j\)) ...
- 【2019.8.6 慈溪模拟赛 T2】树上路径(tree)(Trie)
从暴力考虑转化题意 考虑最暴力的做法,我们枚举路径的两端,然后采用类似求树上路径长度的做法,计算两点到根的贡献,然后除去\(LCA\)到根的贡献两次. 即,设\(v_i\)为\(i\)到根路径上的边权 ...
- 2019.7.26 NOIP 模拟赛
这次模拟赛真的,,卡常赛. The solution of T1: std是打表,,考场上sb想自己改进匈牙利然后wei了(好像匈牙利是错的. 大力剪枝搜索.代码不放了. 这是什么神仙D1T1,爆蛋T ...
- 20161003 NOIP 模拟赛 T2 解题报告
Weed duyege的电脑上面已经长草了,经过辨认上面有金坷垃的痕迹. 为了查出真相,duyege 准备修好电脑之后再进行一次金坷垃的模拟实验. 电脑上面有若干层金坷垃,每次只能在上面撒上一层高度为 ...
- 2018.02.12 noip模拟赛T2
二兵的赌注 Description游戏中,二兵要进入了一家奇怪的赌场.赌场中有n个庄家,每个庄家都可以猜大猜小,猜一次一元钱.每一次开彩前,你都可以到任意个庄家那里下赌注.如果开彩结果是大,你就可以得 ...
随机推荐
- nginx 修改文件上传大小限制
修改nginx的配置文件,添加client_max_body_size 字段 注:client_max_body_size 必须要放在server下的server_name下,而不是放在locatio ...
- 32(1).层次聚类---AGNES
层次聚类hierarchical clustering 试图在不同层次上对数据集进行划分,从而形成树形的聚类结构. 一. AGNES AGglomerative NESting:AGNES是一种常用的 ...
- 30(1).原型聚类---k-means
原型聚类prototype-based clustering假设聚类结构能通过一组原型刻画. 常见的原型聚类有: k均值算法k-means 学习向量量化算法Learning Vector Quanti ...
- dp习题
仅收录有意思的题目 数的划分 导弹拦截 : LIS的两种优化 教主的花园:将不同的情况分类,最后取max 午餐 & 挂饰: 需要排序 挂饰:0-1背包处理负数体积 投资的最大效益 : 完全背包 ...
- js获取数组最大值或最小值
数组对象arr中属性num最大值最小值 // 最大值 Math.max.apply(Math,arr.map(item => { return item.num })) arr.sort((a, ...
- Python爬虫基础——HTML、CSS、JavaScript、JQuery网页前端技术
一.HTML HTML是Hyper Text Markup Language(超文本标记语言)的缩写. HTML不是一种编程语言,而是标记语言. HTML的语法 双标签: 单标签: HTML的元素和属 ...
- php中对于file的相关语句
// 打开文件 fopen(); // 打开文件的方式 r 只读,r+ 读写方式打开 w 以写入的方式打开 w+ 以读写方式打开(以覆盖的形式写入) // a以写入的方式打开,文件不存在则创建 x创建 ...
- go语言之指针
package main import "fmt" //指针 //go语言的指针是非常容易学习的,比c中容易很多,他可以更简单的执行一些任务 //与变量类型,使用前需要定义 fun ...
- idea实战技巧
一.背景 为什么想写这个,因为编码一线更多的是实战,实战中,可能一个快捷键,一个小技巧,就能省很多时间. 本文会持续记录,持续更新. 二.技巧 1.全局替换(带正则) 场景是: 多profile的情况 ...
- jquery选择器之模糊匹配
模糊匹配主要分为前导模糊匹配,后导模糊匹配和全文模糊匹配. 前导模糊匹配[^=] 例子:选择name前缀为aa的所有div的jQuery对象. $("div[name^='aa']" ...