有关logistic(sigmoid)函数回归
在神经网络中,经常用到sigmoid函数,y = 1 / (1+e-x)
作为下一级神经元的激活函数,x也就是WX(下文,W以θ符号代替)矩阵计算结果。
这个函数通常用在进行分类,通常分为1或0的逻辑分类,所以又叫logistic回归。
常规常规情况下,我们使用的损失函数是 j(θ) = 1 / 2n * ∑(hθ(x) - y) , hθ(x) 也就是激活函数(或hypothesis函数),y是样本结果数据。在大部分情况下,这是通用的。以向量来看,空间点Hθ(x)和Y距离最小化。
但是,由于sigmoid函数是非线性的,所以用以上损失函数,求偏导后,得到的 j(θ)只能是局部最小值(左图),得不到真正的最小值。
因此,在logistic回归中,最优的损失函数,应该是:
y是指样本值。(也即是损失函数和y的关系,不再是直接减去y(样本目标值))
图像:
当y=0时,如果Hθ(x)越接近0,那么损失越小。也就是说,只要偏导数为0,反向传播时依然往最小值方向(而非局部最小值)
如果y=0,但是Hθ(x)不接近0,甚至于大于1,那么损失就非常巨大,那么可以造成反响传播时,修改原θ值就越大了。
连个曲线合并,就是J = y * log(x) + (1 - y) * log (1 - x),y的取值只能为0或1
整个损失函数简化后,得到:
(此函数,又叫交叉熵函数)
θ其实也即是权,或参数值。
总的来说,根据学习的结果类型(是0或1类型,还是数值类型),选择合适的激活函数,同时,也要有对应的损失函数,才能得到最佳效果。
有关logistic(sigmoid)函数回归的更多相关文章
- Logistic 回归(sigmoid函数,手机的评价,梯度上升,批处理梯度,随机梯度,从疝气病症预测病马的死亡率
(手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如 ...
- 逻辑回归为什么用sigmoid函数
Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷. 因此,使用logistic函数(或称作sigmoid函数)将自 ...
- 逻辑回归和sigmoid函数分类
逻辑回归和sigmoid函数分类:容易欠拟合,分类精度不高,计算代价小,易于理解和实现 sigmoid函数与阶跃函数的区别在于:阶跃函数从0到1的跳跃在sigmoid函数中是一个逐渐的变化,而不是突变 ...
- Logstic回归采用sigmoid函数的原因
##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: 
分类是机器学习的一个基本问题, 基本原则就是将某个待分类的事情根据其不同特征划分为两类. Email: 垃圾邮件/正常邮件 肿瘤: 良性/恶性 蔬菜: 有机/普通 对于分类问题, 其结果 y∈{0,1 ...
- 机器学习简要笔记(五)——Logistic Regression(逻辑回归)
1.Logistic回归的本质 逻辑回归是假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度上升/下降法来求解参数,从而实现数据的二分类. 1.1.逻辑回归的基本假设 ①伯努利分布:以抛硬币为例 ...
随机推荐
- 夯实Java基础系列17:一文搞懂Java多线程使用方式、实现原理以及常见面试题
本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下 ...
- 夯实Java基础系列21:Java8新特性终极指南
本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下 ...
- ORM查询总结版
目录 概要 ORM常用字段 ORM基础 自定义一个插入类型,即固定长度 创建类终极版 多对多关系表创建 常用几个代码 参数 ORM与数据库代码对应的关系 外键使用分表很麻烦,要先删除主表后,再删除 不 ...
- B-线性代数-距离公式汇总
目录 距离公式汇总 一.欧式距离 二.曼哈顿距离 三.闵可夫斯基距离(Minkowski distance) 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬 ...
- centos8安装图解
CentOS 8 的新特性 DNF 成为了默认的软件包管理器,同时 yum 仍然是可用的 使用网络管理器(nmcli 和 nmtui)进行网络配置,移除了网络脚本 使用 Podman 进行容器管理 引 ...
- Numpy数组解惑
参考: 理解numpy的rollaxis与swapaxes函数:https://blog.csdn.net/liaoyuecai/article/details/80193996 Numpy数组解惑: ...
- 手把手教你吧Python应用到实际开发 不再空谈悟法☝☝☝
手把手教你吧Python应用到实际开发 不再空谈悟法☝☝☝ 想用python做机器学习吗,是不是在为从哪开始挠头?这里我假定你是新手,这篇文章里咱们一起用Python完成第一个机器学习项目.我会手把手 ...
- 算法学习之剑指offer(五)
题目1 题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. public class Solution ...
- 某PHP发卡系统SQL注入
源码出自:https://www.0766city.com/yuanma/11217.html 安装好是这样的 审计 发现一处疑似注入的文件 地址:/other/submit.php 看到这个有个带入 ...
- 上手Typescript,让JavaScript适用于大型应用开发
Typescript Typescript是一个基于静态类型的,能编译为JavaScript的JavaScript的超集.也就是说任何JavaScript都可以看成是Typescript,IDE能够更 ...