在神经网络中,经常用到sigmoid函数,y = 1 / (1+e-x)

作为下一级神经元的激活函数,x也就是WX(下文,W以θ符号代替)矩阵计算结果。

这个函数通常用在进行分类,通常分为1或0的逻辑分类,所以又叫logistic回归。

常规常规情况下,我们使用的损失函数是 j(θ) = 1 / 2n * ∑(hθ(x) - y) , hθ(x)  也就是激活函数(或hypothesis函数),y是样本结果数据。在大部分情况下,这是通用的。以向量来看,空间点Hθ(x)和Y距离最小化。

但是,由于sigmoid函数是非线性的,所以用以上损失函数,求偏导后,得到的 j(θ)只能是局部最小值(左图),得不到真正的最小值。

因此,在logistic回归中,最优的损失函数,应该是:

y是指样本值。(也即是损失函数和y的关系,不再是直接减去y(样本目标值))

图像:

当y=0时,如果Hθ(x)越接近0,那么损失越小。也就是说,只要偏导数为0,反向传播时依然往最小值方向(而非局部最小值)

如果y=0,但是Hθ(x)不接近0,甚至于大于1,那么损失就非常巨大,那么可以造成反响传播时,修改原θ值就越大了。

连个曲线合并,就是J = y * log(x) + (1 - y) * log (1 - x),y的取值只能为0或1

整个损失函数简化后,得到:

(此函数,又叫交叉熵函数)

θ其实也即是权,或参数值。

总的来说,根据学习的结果类型(是0或1类型,还是数值类型),选择合适的激活函数,同时,也要有对应的损失函数,才能得到最佳效果。

有关logistic(sigmoid)函数回归的更多相关文章

  1. Logistic 回归(sigmoid函数,手机的评价,梯度上升,批处理梯度,随机梯度,从疝气病症预测病马的死亡率

    (手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如 ...

  2. 逻辑回归为什么用sigmoid函数

    Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷. 因此,使用logistic函数(或称作sigmoid函数)将自 ...

  3. 逻辑回归和sigmoid函数分类

    逻辑回归和sigmoid函数分类:容易欠拟合,分类精度不高,计算代价小,易于理解和实现 sigmoid函数与阶跃函数的区别在于:阶跃函数从0到1的跳跃在sigmoid函数中是一个逐渐的变化,而不是突变 ...

  4. Logstic回归采用sigmoid函数的原因

    ##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: ![](http://images2017.cnblogs.com/blog/1 ...

  5. Sigmoid函数的替代:overflow encountered in exp in computing the logistic function

    RuntimeWarning: overflow encountered in exp in computing the logistic function 以下是sigmoid函数的标准写法,但是如 ...

  6. Logistic Regression逻辑回归

    参考自: http://blog.sina.com.cn/s/blog_74cf26810100ypzf.html http://blog.sina.com.cn/s/blog_64ecfc2f010 ...

  7. Coursera DeepLearning.ai Logistic Regression逻辑回归总结

    既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有 ...

  8. Logistic Regression(逻辑回归)

    分类是机器学习的一个基本问题, 基本原则就是将某个待分类的事情根据其不同特征划分为两类. Email: 垃圾邮件/正常邮件 肿瘤: 良性/恶性 蔬菜: 有机/普通 对于分类问题, 其结果 y∈{0,1 ...

  9. 机器学习简要笔记(五)——Logistic Regression(逻辑回归)

    1.Logistic回归的本质 逻辑回归是假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度上升/下降法来求解参数,从而实现数据的二分类. 1.1.逻辑回归的基本假设 ①伯努利分布:以抛硬币为例 ...

随机推荐

  1. MongoDB 学习笔记之 入门安装和配置

    下载MongoDB: 下载解压即可使用. 为了启动方便和统一管理, 在Mongo根目录下建立/data, /logs, /conf文件夹. 在conf文件夹下建立mongodb.conf 文件,基本配 ...

  2. springmvc框架的使用

    1.在idea中新建java web项目,引入spring和springmvc所需jar包,其中 spring-web-3.2.12.RELEASE.jar:在web应用开发时使用spring框架所需 ...

  3. 并发编程之原子操作Atomic&Unsafe

    原子操作:不能被分割(中断)的一个或一系列操作叫原子操作. 原子操作Atomic主要有12个类,4种类型的原子更新方式,原子更新基本类型,原子更新数组,原子更新字段,原子更新引用.Atomic包中的类 ...

  4. 一文了解 Redis 内存监控和内存消耗

    Redis 是一种内存数据库,将数据保存在内存中,读写效率要比传统的将数据保存在磁盘上的数据库要快很多.所以,监控 Redis 的内存消耗并了解 Redis 内存模型对高效并长期稳定使用 Redis ...

  5. Spring Boot2 系列教程(十二)@ControllerAdvice 的三种使用场景

    严格来说,本文并不算是 Spring Boot 中的知识点,但是很多学过 SpringMVC 的小伙伴,对于 @ControllerAdvice 却并不熟悉,Spring Boot 和 SpringM ...

  6. 内网转发之reGeorg+proxifier

    先将reGeorg的对应脚本上传到服务器端,reGeorg提供了PHP.ASPX.JSP脚本,直接访问显示“Georg says, 'All seems fine'”,表示脚本运行正常. 运行 pyt ...

  7. Python之装饰器(二)

    以前你有没有这样一段经历:很久之前你写过一个函数,现在你突然有了个想法就是你想看看,以前那个函数在你数据集上的运行时间是多少,这时候你可以修改之前代码为它加上计时的功能,但是这样的话是不是还要大体读读 ...

  8. 02 【PMP】项目管理系统、PMIS、工作授权系统、配置管理系统、变更管理

    PMBOK融会贯通:盘点八大系统<项目管理系统.PMIS.工作授权系统.配置管理系统.变更管理>   一.  PMBOK相关系统: 工作系统作为事业环境因素,提高或限制项目管理的灵活性,并 ...

  9. Docker安装ELK并实现JSON格式日志分析

    ELK是什么 ELK是elastic公司提供的一套完整的日志收集以及前端展示的解决方案,是三个产品的首字母缩写,分别是ElasticSearch.Logstash和Kibana. 其中Logstash ...

  10. django1-环境搭建

    我的环境:win10 + pycharm2019.1.3 + python3.6.5 + Django2.1.10 安装django cmd下执行:pip install django==2.1.10 ...