那些遗忘过去的人注定要重蹈覆辙。——乔治•桑塔亚纳 
  • Authorized error

刚开始按作者 GitHub 上的指示,当运行环境配置好,并且 make 之后,因为生成的 decompose.py 是可执行文件,直接运行

bell2014/decompose.py ../../original.png

就出现了这样的错误

import: not authorized `pd' @ error/constitute.c/WriteImage/1028

看到有相关问题的解答中提到

这是python脚本,不应该把它当成shell脚本运行,当然会报错

突然反应过来,我们通常在终端直接运行的可执行文件一般由 /usr/bin/sh 来作为默认执行器

而 .py 脚本需要显式指出 python 解释器,这样就有了解决方案,直接用 python 来运行就可以了啊

python3 bell2014/decompose.py ../../original.png
  • namespacepath error
AttributeError: '_NamespacePath' object has no attribute 'sort'

该错误好像与 pip 有关,可以使用以下命令解决

sudo pip3 install --upgrade setuptools
  • numpy error

ValueError: numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject

造成这个问题的原因是各种库之间的版本不匹配,numpy版本不合适,只需要把numpy降级到刚好满足需要的版本,就可以了。

Python packages (newer packages will likely work, though these are the exact versions that I used):

    PIL==1.1.7
cython==0.19.2
numpy==1.8.0
scipy==0.13.2
scikit-image==0.9.3
scikit-learn==0.14.1

将所用到的库的版本均降低了一些,没有使用最高版本的,这样就解决了错误。

cv@cv:~ $ sudo pip3 uninstall numpy

cv@cv:~ $ sudo pip3 install numpy==1.8.2

目前的版本如下所示

cv@cv:~ $ python3
>>> Python 3.5.2 (default, Nov 12 2018, 13:43:14)
>>> [GCC 5.4.0 20160609] on linux
>>> Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> import scipy
>>> import skimage
>>> import sklearn
>>> import PIL
>>> numpy.__version__
'1.8.2'
>>> scipy.__version__
'1.0.0'
>>> skimage.__version__
'0.9.3'
>>> sklearn.__version__
'0.19.0'
>>> PIL.__version__
'6.0.0'
  • cPickle error

在 python3 中使用如下代码会报错:

import cPickle as pk

ImportError: No module named 'cPickle'

原因: python2 有 cPickle ,但 python3 是没有的,其对应的是 pickle

解决办法:将cPickle改为pickle即可

import pickle as pk

编程时要特别注意一下版本问题,因为 python3 并不兼容 python2。

  • Unicode Decode Error

文件中语句如下

self.density = pk.load(gzip.open(data_filename, "rb"))

执行过程中一直报错

Traceback (most recent call last):
File "bell2014/decompose.py", line 125, in <module>
solver = IntrinsicSolver(input, params)
File "/home/cv/li/mycode/github/intrinsic_test/bell2014/solver.py", line 26,in __init__
self.energy = IntrinsicEnergy(self.input, params)
File "/home/cv/li/mycode/github/intrinsic_test/bell2014/energy/energy.py", line 14, in __init__
self.prob_abs_r = ProbAbsoluteReflectance(params)
File "/home/cv/li/mycode/github/intrinsic_test/bell2014/energy/prob_abs_r.py", line 16, in __init__
self._load()
File "/home/cv/li/mycode/github/intrinsic_test/bell2014/energy/prob_abs_r.py", line 66, in _load
self.density = pk.load(f)
UnicodeDecodeError: 'ascii' codec can't decode byte 0xfe in position 0: ordinal not in range(128)

想了一下,同时 Google 查了 gzip 和 pickle 的基本使用方法

一般都是这样

# 解压gzip文件示例:
import gzip
f = gzip.open('file.txt.gz', 'rb')
file_content = f.read()
f.close() # 创建gzip文件:
import gzip
content = "Lots of content here"
f = gzip.open('file.txt.gz', 'wb')
f.write(content)
f.close() # gzip压缩现有文件:
import gzip
f_in = open('file.txt', 'rb')
f_out = gzip.open('file.txt.gz', 'wb')
f_out.writelines(f_in)
f_out.close()
f_in.close()

gzip操作

就想着试了一下,先把文件打开然后操作,操作完成再关闭

f = gzip.open(data_filename, "rb")
self.density = pk.load(f)
f.close()

果然还是不行,报同样的错误

UnicodeDecodeError: 'ascii' codec can't decode byte 0xfe in position 0: ordinal not in range(128)

看起来是解码的问题,试一下 utf-8

f = gzip.open(data_filename, "rb")
self.density = pk.load(f, encoding='utf-8')
f.close()

有点转机,错误提示改变了

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xfe in position 0: invalid start byte

再试一下 iso-8859-1

f = gzip.open(data_filename, "rb")

self.density = pk.load(f, encoding='iso-8859-1')

f.close()

我的天,竟然可以了!通过了!

参考博客Python3:pickle加载文件产生UnicodeDecodeError

  • xrang error

运行某代码时,报错

NameError:name ‘xrange’ is not defined

原因:在 python 3 中, range() 与 xrange() 合并为 range( ) 。我的 python 版本为 python3.5。

解决办法:将 xrange( ) 函数全部换为 range( )

最终结果

 Input:
image_filename: ../../original.png
mask_filename: None
judgements_filename: None
parameters_filename: None
Output:
r_filename: ../../original-r.png
s_filename: ../../original-s.png
mask_nnz: 280200
rows * cols: 280200
loading reflectances...
loaded reflectances
solve...
initialization: k-means clustering with 20 centers...
clustering done (0.040790392999042524 s). intensities:
[ 6.92203607e-04 4.26960300e-01 1.24212123e-02 1.89641258e-01
5.15146685e-02 3.61099089e-02 1.32774291e-02 2.76836577e-01
8.22313432e-02 4.94125146e-02 3.46569114e-02 1.00000000e-04
3.33934676e-04 1.00000000e-04 1.38523075e-01 2.60739745e-02
2.33498816e-01 8.18735683e-02 3.37480727e-01 1.18922356e-01] run: starting iteration 0/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 75.89183091743142 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5502416119998088 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (1.1698709270003746 s)
stage1_optimize_r: done (1.83796778299984 s)
remove_unused_intensities: 17/20 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (25007 x 17, 50014 nnz)...
l1 optimization: (iter 0) mean_error: 0.848319845669
l1 optimization: (iter 10) mean_error: 0.706672318615
l1 optimization: (iter 20) mean_error: 0.702868308422
l1 optimization: (iter 22) mean_error increased: 0.702733472884 --> 0.702734513573 (exit)
stage2_smooth_s: done (0.4088439740007743 s) run: starting iteration 1/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 37.94591545871571 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.7491755259998172 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.9353584070013312 s)
stage1_optimize_r: done (1.7722134529994946 s)
remove_unused_intensities: 16/17 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (43826 x 16, 87652 nnz)...
l1 optimization: (iter 0) mean_error: 0.550938643846
l1 optimization: (iter 10) mean_error: 0.376970472637
l1 optimization: (iter 20) mean_error: 0.370139366244
l1 optimization: (iter 30) mean_error: 0.369354364487
l1 optimization: (iter 40) mean_error: 0.369244346271
l1 optimization: (iter 47) mean_error: 0.369230949421, delta_error: 8.6196241128e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.7199039520000952 s) run: starting iteration 2/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 25.29727697247714 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.6731677829993714 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.778866000000562 s)
stage1_optimize_r: done (1.537968656000885 s)
remove_unused_intensities: 15/16 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (44218 x 15, 88436 nnz)...
l1 optimization: (iter 0) mean_error: 0.540483078222
l1 optimization: (iter 10) mean_error: 0.372397125285
l1 optimization: (iter 20) mean_error: 0.366028241311
l1 optimization: (iter 30) mean_error: 0.365352926541
l1 optimization: (iter 40) mean_error: 0.365258067798
l1 optimization: (iter 46) mean_error: 0.365247445171, delta_error: 7.83756222034e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.6630497730002389 s) run: starting iteration 3/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 18.972957729357855 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.6042482350003411 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.876166440999441 s)
stage1_optimize_r: done (1.565152675999343 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (43854 x 15, 87708 nnz)...
l1 optimization: (iter 0) mean_error: 0.548123465878
l1 optimization: (iter 10) mean_error: 0.379183935982
l1 optimization: (iter 20) mean_error: 0.370830671736
l1 optimization: (iter 30) mean_error: 0.36985870122
l1 optimization: (iter 40) mean_error: 0.36973524898
l1 optimization: (iter 46) mean_error: 0.369724295589, delta_error: 8.89927681436e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.6645084909996513 s) run: starting iteration 4/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 15.178366183486284 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5825622169995768 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8731047119999857 s)
stage1_optimize_r: done (1.53111209799863 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (43004 x 15, 86008 nnz)...
l1 optimization: (iter 0) mean_error: 0.550404498789
l1 optimization: (iter 10) mean_error: 0.386131037438
l1 optimization: (iter 20) mean_error: 0.378380593721
l1 optimization: (iter 30) mean_error: 0.377523726779
l1 optimization: (iter 40) mean_error: 0.377437227894
l1 optimization: (iter 47) mean_error: 0.377422669138, delta_error: 8.53155257996e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.6746894789994258 s) run: starting iteration 5/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 12.64863848623857 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.586484137998923 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8833774769991578 s)
stage1_optimize_r: done (1.546162930000719 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (38484 x 15, 76968 nnz)...
l1 optimization: (iter 0) mean_error: 0.601459488203
l1 optimization: (iter 10) mean_error: 0.424348137709
l1 optimization: (iter 20) mean_error: 0.416596460813
l1 optimization: (iter 30) mean_error: 0.415852904128
l1 optimization: (iter 40) mean_error: 0.415766428415
l1 optimization: (iter 42) mean_error: 0.415762909767, delta_error: 7.39926142357e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5937881139998353 s) run: starting iteration 6/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 10.84169013106163 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5921503869994922 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8720934989996749 s)
stage1_optimize_r: done (1.5388636010011396 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (37601 x 15, 75202 nnz)...
l1 optimization: (iter 0) mean_error: 0.619964978736
l1 optimization: (iter 10) mean_error: 0.433095199442
l1 optimization: (iter 20) mean_error: 0.426054271345
l1 optimization: (iter 30) mean_error: 0.425190827702
l1 optimization: (iter 40) mean_error: 0.425058632191
l1 optimization: (iter 48) mean_error: 0.425038841506, delta_error: 9.60581080511e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.6509161739995761 s) run: starting iteration 7/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 9.486478864678928 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5920468869990145 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8754881279983238 s)
stage1_optimize_r: done (1.544129306999821 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (36755 x 15, 73510 nnz)...
l1 optimization: (iter 0) mean_error: 0.627910150615
l1 optimization: (iter 10) mean_error: 0.43875294303
l1 optimization: (iter 20) mean_error: 0.431762743505
l1 optimization: (iter 30) mean_error: 0.431104294517
l1 optimization: (iter 40) mean_error: 0.431007532326
l1 optimization: (iter 46) mean_error: 0.430995949755, delta_error: 8.77516629028e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.6091458529990632 s) run: starting iteration 8/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 8.43242565749238 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5855570280000393 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8547230149997631 s)
stage1_optimize_r: done (1.515983179999239 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (33610 x 15, 67220 nnz)...
l1 optimization: (iter 0) mean_error: 0.665736118836
l1 optimization: (iter 10) mean_error: 0.470680514058
l1 optimization: (iter 20) mean_error: 0.461393751811
l1 optimization: (iter 30) mean_error: 0.46026093385
l1 optimization: (iter 40) mean_error: 0.46008151787
l1 optimization: (iter 50) mean_error: 0.46006048483
l1 optimization: (iter 50) mean_error: 0.46006048483, delta_error: 7.13663690532e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.6291282800011686 s) run: starting iteration 9/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 7.589183091743142 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5784938489996421 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8727145949997066 s)
stage1_optimize_r: done (1.5304242220008746 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (31189 x 15, 62378 nnz)...
l1 optimization: (iter 0) mean_error: 0.709556319409
l1 optimization: (iter 10) mean_error: 0.500595527149
l1 optimization: (iter 20) mean_error: 0.492321439986
l1 optimization: (iter 30) mean_error: 0.491430305891
l1 optimization: (iter 40) mean_error: 0.491332338391
l1 optimization: (iter 49) mean_error: 0.491316172339, delta_error: 7.75992434643e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5869300369995472 s) run: starting iteration 10/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 6.899257356130129 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.6024649629998748 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8745310489994154 s)
stage1_optimize_r: done (1.5556861759996536 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (29766 x 15, 59532 nnz)...
l1 optimization: (iter 0) mean_error: 0.735994109185
l1 optimization: (iter 10) mean_error: 0.526304734392
l1 optimization: (iter 20) mean_error: 0.515772788891
l1 optimization: (iter 30) mean_error: 0.514534596355
l1 optimization: (iter 36) mean_error increased: 0.514402404439 --> 0.514416410605 (exit)
stage2_smooth_s: done (0.5050967379993381 s) run: starting iteration 11/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 6.324319243119285 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5678862309996475 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8836220150005829 s)
stage1_optimize_r: done (1.527260953998848 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (29535 x 15, 59070 nnz)...
l1 optimization: (iter 0) mean_error: 0.741882340631
l1 optimization: (iter 10) mean_error: 0.530476714165
l1 optimization: (iter 20) mean_error: 0.522208230328
l1 optimization: (iter 30) mean_error: 0.521135630436
l1 optimization: (iter 40) mean_error: 0.520994358485
l1 optimization: (iter 47) mean_error: 0.520979465156, delta_error: 8.24535989374e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5645751089996338 s) run: starting iteration 12/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 5.837833147494725 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5735502790012106 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.9114546349992452 s)
stage1_optimize_r: done (1.5603041840004153 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (29307 x 15, 58614 nnz)...
l1 optimization: (iter 0) mean_error: 0.746392356218
l1 optimization: (iter 10) mean_error: 0.537803689155
l1 optimization: (iter 20) mean_error: 0.527371253087
l1 optimization: (iter 30) mean_error: 0.526434112731
l1 optimization: (iter 40) mean_error: 0.526316320673
l1 optimization: (iter 46) mean_error: 0.526305673425, delta_error: 9.59256531319e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5614078930011601 s) run: starting iteration 13/25 [214/7610]
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 5.420845065530815 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5659318560010433 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8842907340003876 s)
stage1_optimize_r: done (1.5257483599998523 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (27972 x 15, 55944 nnz)...
l1 optimization: (iter 0) mean_error: 0.773853801604
l1 optimization: (iter 10) mean_error: 0.559586556523
l1 optimization: (iter 20) mean_error: 0.549398153147
l1 optimization: (iter 30) mean_error: 0.547986199579
l1 optimization: (iter 35) mean_error increased: 0.547894372781 --> 0.547896035881 (exit)
stage2_smooth_s: done (0.47925809000116715 s) run: starting iteration 14/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 5.059455394495428 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5734855059999973 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.9105934059989522 s)
stage1_optimize_r: done (1.561003109000012 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (27467 x 15, 54934 nnz)...
l1 optimization: (iter 0) mean_error: 0.783897527628
l1 optimization: (iter 10) mean_error: 0.566821847196
l1 optimization: (iter 20) mean_error: 0.557159197805
l1 optimization: (iter 30) mean_error: 0.55564332358
l1 optimization: (iter 40) mean_error: 0.55537877309
l1 optimization: (iter 50) mean_error: 0.55533702513
l1 optimization: (iter 54) mean_error: 0.555333196652, delta_error: 1.07781230607e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5889139669998258 s) run: starting iteration 15/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 4.743239432339464 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5652168649994564 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.9014703690008901 s)
stage1_optimize_r: done (1.547290978998717 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (27116 x 15, 54232 nnz)...
l1 optimization: (iter 0) mean_error: 0.791842473657
l1 optimization: (iter 10) mean_error: 0.573400876961
l1 optimization: (iter 20) mean_error: 0.563325144168
l1 optimization: (iter 30) mean_error: 0.562210411814
l1 optimization: (iter 35) mean_error increased: 0.562123003338 --> 0.562123113041 (exit)
stage2_smooth_s: done (0.47673624800154357 s) run: starting iteration 16/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 4.464225348084201 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5694691879998572 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8925902729988593 s)
stage1_optimize_r: done (1.5394175100009306 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (26079 x 15, 52158 nnz)...
l1 optimization: (iter 0) mean_error: 0.814814990158
l1 optimization: (iter 10) mean_error: 0.589985840271
l1 optimization: (iter 20) mean_error: 0.580643986305
l1 optimization: (iter 30) mean_error: 0.579654937015
l1 optimization: (iter 40) mean_error: 0.579545343555
l1 optimization: (iter 50) mean_error: 0.579523484835
l1 optimization: (iter 51) mean_error: 0.579523131158, delta_error: 3.53676597342e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5542264689993317 s) run: starting iteration 17/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 4.21621282874619 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5775087729998631 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8994289300007949 s)
stage1_optimize_r: done (1.5562123859999701 s)
remove_unused_intensities: 15/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (26468 x 15, 52936 nnz)...
l1 optimization: (iter 0) mean_error: 0.806100123463
l1 optimization: (iter 10) mean_error: 0.584476665487
l1 optimization: (iter 20) mean_error: 0.574978404455
l1 optimization: (iter 30) mean_error: 0.574059125645
l1 optimization: (iter 40) mean_error: 0.573946381544
l1 optimization: (iter 48) mean_error: 0.573934056462, delta_error: 7.93614210903e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5404784649999783 s) run: starting iteration 18/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 3.9943068903911274 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5776914130001387 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8881214180000825 s)
stage1_optimize_r: done (1.5512798629988538 s)
remove_unused_intensities: 14/15 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (26755 x 14, 53510 nnz)...
l1 optimization: (iter 0) mean_error: 0.800227144263
l1 optimization: (iter 10) mean_error: 0.580760011161
l1 optimization: (iter 20) mean_error: 0.571072338112
l1 optimization: (iter 30) mean_error: 0.570175604626
l1 optimization: (iter 40) mean_error: 0.57003969275
l1 optimization: (iter 48) mean_error: 0.570021159545, delta_error: 6.59219483889e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5348999540001387 s) run: starting iteration 19/25
compute_unary_costs...
blur sigma: 3.794591545871571 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5321224870003789 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8216276469993318 s)
stage1_optimize_r: done (1.4295585580002808 s)
remove_unused_intensities: 14/14 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (25760 x 14, 51520 nnz)...
l1 optimization: (iter 0) mean_error: 0.823102834924
l1 optimization: (iter 10) mean_error: 0.598165207553
l1 optimization: (iter 20) mean_error: 0.58779100678
l1 optimization: (iter 30) mean_error: 0.586455670291
l1 optimization: (iter 40) mean_error: 0.586311308971
l1 optimization: (iter 48) mean_error: 0.586294653467, delta_error: 9.07397276428e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5258193869995011 s) run: starting iteration 20/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 3.613896710353877 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.5337906789991393 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.8146714840004279 s)
stage1_optimize_r: done (1.423714012000346 s)
remove_unused_intensities: 13/14 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (27844 x 13, 55688 nnz)...
l1 optimization: (iter 0) mean_error: 0.7763068581
l1 optimization: (iter 10) mean_error: 0.56457658627
l1 optimization: (iter 20) mean_error: 0.554611154765
l1 optimization: (iter 30) mean_error: 0.553539496221
l1 optimization: (iter 40) mean_error: 0.553407694958
l1 optimization: (iter 49) mean_error: 0.553388498944, delta_error: 5.71098693003e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.535263923000457 s) run: starting iteration 21/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 3.4496286780650647 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.4950314950001484 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.7790628120001202 s)
stage1_optimize_r: done (1.3543717560005462 s)
remove_unused_intensities: 12/13 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (27464 x 12, 54928 nnz)...
l1 optimization: (iter 0) mean_error: 0.783821193892
l1 optimization: (iter 10) mean_error: 0.567872874384
l1 optimization: (iter 20) mean_error: 0.559774390113
l1 optimization: (iter 30) mean_error: 0.558840502984
l1 optimization: (iter 40) mean_error: 0.55872708717
l1 optimization: (iter 47) mean_error: 0.558709929732, delta_error: 8.11216353647e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5060469210002339 s) run: starting iteration 22/25
stage1_optimize_r: compute costs...
compute_unary_costs... [32/7610]
blur sigma: 3.2996448224970183 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.4522810700000264 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.6781864069998846 s)
stage1_optimize_r: done (1.2041443830003118 s)
remove_unused_intensities: 12/12 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (26613 x 12, 53226 nnz)...
l1 optimization: (iter 0) mean_error: 0.803313082765
l1 optimization: (iter 10) mean_error: 0.585454389126
l1 optimization: (iter 20) mean_error: 0.572935523084
l1 optimization: (iter 30) mean_error: 0.571668572036
l1 optimization: (iter 40) mean_error: 0.571550105523
l1 optimization: (iter 50) mean_error: 0.57152486767
l1 optimization: (iter 51) mean_error: 0.571524126167, delta_error: 7.41502855561e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.515380897999421 s) run: starting iteration 23/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 3.1621596215596424 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.4568941420002375 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.6868505080001341 s)
stage1_optimize_r: done (1.2174359950004146 s)
remove_unused_intensities: 12/12 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (28014 x 12, 56028 nnz)...
l1 optimization: (iter 0) mean_error: 0.773720996995
l1 optimization: (iter 10) mean_error: 0.56187904257
l1 optimization: (iter 20) mean_error: 0.550965017396
l1 optimization: (iter 30) mean_error: 0.549877522487
l1 optimization: (iter 40) mean_error: 0.549742202569
l1 optimization: (iter 47) mean_error: 0.549728343696, delta_error: 9.56516332029e-07 < 1e-06 (exit)
stage2_smooth_s: done (0.5140209019991744 s) run: starting iteration 24/25
stage1_optimize_r: compute costs...
compute_unary_costs...
blur sigma: 3.035673236697257 pixels (image diagonal: 758.9183091743142 pixels)
compute_unary_costs: done (0.46191501500106824 s)
stage1_optimize_r: optimizing dense crf (10 iters)...
stage1_optimize_r: dense crf done (0.6868947450002452 s)
stage1_optimize_r: done (1.2291630130002886 s)
remove_unused_intensities: 12/12 labels kept
split_label_clusters: 12 --> 5912
remove_unused_intensities: 5912/5912 labels kept
stage2_smooth_s: constructing linear system...
solving linear system...
solving sparse linear system (27519 x 5912, 55038 nnz)...
l1 optimization: (iter 0) mean_error: 0.211440063628
l1 optimization: (iter 10) mean_error: 0.203399581531
l1 optimization: (iter 20) mean_error: 0.203242222921
l1 optimization: (iter 24) mean_error: 0.203233986913, delta_error: 7.34804542463e-07 < 1e-06 (exit)
stage2_smooth_s: done (8.013847729998815 s)
solve (61.8871597870002 s)

Output

效果示意,其中第一幅图是输入的原图original.png,第二幅图是生成的反射图像original-r.png,第三幅图是生成的光照图像original-s.png,看结果还是十分可观的。

    

调试seanbell/intrinsic遇到的坑的更多相关文章

  1. 使用VirtualBox调试项目踩过的坑

    当我们完成项目后 通常需要做其他系统的测试 例如win10下测试完成后要在win7中测试 这时,安装一个虚拟机是较为明智的选择 本文将讲述在使用虚拟机测试Unity发布的exe(所有的3D文件都适用) ...

  2. 配置使用sourcemap调试vue源码爬坑

    环境: Google Chrome  V72.0.3626.109 vue-dev V 2.6.10 爬坑的乐趣就不说了(我恨啊),以下说一下出坑要点 1. 在vue-dev的package.json ...

  3. [PHP-Debug] 使用 php -l 调试 PHP 错误遇到的坑

    有时候,因为系统代码的增加,造成很多文件的相互关联,又或者某些第三接口(微信等),你必须要在线上调试. 线上环境,我们都是设置 “ini_set('display_errors' , false)” ...

  4. 【支付宝SDK】沙箱调试,以及遇到的坑

    from rest_framework.views import APIView from alipay import AliPay, DCAliPay, ISVAliPay from django. ...

  5. Uncaught RangeError: Maximum call stack size exceeded 调试日记

    异常处理汇总-前端系列 http://www.cnblogs.com/dunitian/p/4523015.html 开发道路上不是解决问题最重要,而是解决问题的过程,这个过程我们称之为~~~调试 记 ...

  6. Android开发-mac上使用三星S3做真机调试

    之前一直未使用真机进行Android开发,为准备明天的培训,拿出淘汰下来的s3准备环境,竟然发现无法连接mac,度娘一番找到答案,如下:mac 系统开发android,真机调试解决方案(无数的坑之后吐 ...

  7. Windows 10 IoT Core环境配置中的那些坑

    我使用的设备是Raspberry Pi 3B,想来国内的嵌入式玩具应该还是树莓派最常见吧.这段时间一直在捣鼓Win10 IoT,结果发现,从安装一直到编码调试一路下来全都是坑.写这篇东西一个是为了备忘 ...

  8. 使用xcode 8 调试ios10

    这几天更新了ios10,发现真机不能调试,弹出几个错,表示没有证书.用ios9的真机能调试, 真他么坑,总结一下解决方法. 在BuildSetting 的Signing中Code Signing Id ...

  9. 安卓开发,adb shell 调试sqlite3数据库

    安卓开发,adb shell 调试sqlite3数据库 在安卓中创建了sqlite3数据库,想要调试怎么办? 通过adb shell来进行查看. 第一步,将adb加入到系统变量中. 这样就可以在命令行 ...

随机推荐

  1. 改变SecureCRT的背景颜色

    1.在使用secureCRT客户端时,可以连接服务器,默认为白色底. 2.要进行对把底色的白色改为黑色的底色,右击的窗口的位置. 3.下拉菜单中点击 Session Options 4.点击Appea ...

  2. Vue单页面应用打包app处理返回按钮

    情况 顶部返回,在header.vue公用组件中使用 this.$router.go(-1) 安卓:点击返回按钮:登录页,项目选择页,首页等几个一级页面要求提示用户是否退出app;确定,退出;取消:不 ...

  3. C++类成员默认初始值

    有时候我们会不给C++类成员变量赋初始值,或是因为忘记在构造函数中指定(C++11可以写在类内),或是觉得没有必要写.然而,因为觉得编译器会把变量赋成0而不写是错误的.本文通过C++标准来解释这个问题 ...

  4. Real World CTF一日游

    今天去感受了长亭举办的RWCTF现场,参加了技术论坛,也学到了很多的知识 比较有印象的就是 智能安全在Web防护中的探索和实践 阿里云安全防护构建的AI架构体系: 基线检测 基础过滤 异常检测 攻击识 ...

  5. web前端分享JavaScript到底是什么?特点有哪些?

    web前端分享JavaScript到底是什么?特点有哪些?这也是成为web前端工程师必学的内容.今天为大家分享了这篇关于JavaScript的文章,我们一起来看看. 一.JavaScript是什么? ...

  6. Asp.Net MVC中记录错误日志保存到本地txt文件

    为了方便查询系统出错弄个错误日志出来对于维护运维来说是很有必要的. 1.在Asp.Net MVC项目中的App_Start添加一个用于处理异常类的文件ErrorLog让他继承HandleErrorAt ...

  7. kvm磁盘管理

    kvm磁盘管理 kvm虚拟机虚拟磁盘格式转换 各种格式说明介绍 row:裸格式,占用空间较大,不支持快照功能,性能较好,不方便传输(顺序读写) 50G 2G 传输50G qcow2:cow 占用空间小 ...

  8. PWM是如何调节直流电机转速的?电机正反转的原理又是怎样的?

    电机是重要的执行机构,可以将电转转化为机械能,从而驱动北控设备的转动或者移动,在我们的生活中应用非常广泛.例如,应用在电动工具.电动平衡车.电动园林工具.儿童玩具中.直流电机的实物图如下图所示. 1- ...

  9. 【目录】Cocos2d-x系列

    1.Cocos2d-x的坐标系统 2.Cocos2d-x 点击菜单按键居中放大(无需修改底层代码) 3.发布Cocos2d-x的PC端程序 4.Cocos2d-x游戏实例<忍者飞镖>之对象 ...

  10. 如何从Mac删除恶意广告软件,摆脱那些通过弹出广告或工具栏入侵Mac的恶意软件

    厌倦了那些利用弹出式广告和工具栏之类入侵Mac的恶意软件?该如何摆脱Mac上的恶意软件呢?今天小编为大家带来两种方法从Mac 删除广告软件,甚至阻止它到达您的Mac,感兴趣的朋友一起来看看吧! 方法一 ...