1.Attention

最先出自于Bengio团队一篇论文:NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE ,论文在2015年发表在ICLR。

encoder-decoder模型通常的做法是将一个输入的句子编码成一个固定大小的state,然后将这样的一个state输入到decoder中的每一个时刻,这种做法对处理长句子会很不利,尤其是随着句子长度的增加,效果急速下滑。

论文动机:是针对encoder-decoder长句子翻译效果不好的问题。

解决原理:仿造人脑结构,对一张图片或是一个句子,能够重点关注到不同部分。

论文解决思路:在生成当前词的时候,只要把上一个state与所有的input word作为融合,而后做一个权重计算。通过这种方式生成的词就会有针对性,在句子长度较长时效果尤其明显。

整体框架如下图:

2.Self-attention

出自于Google团队的论文:Attention Is All You Need ,2017年发表在NIPS。

论文动机:RNN本身的结构,阻碍了并行化;同时RNN对长距离依赖问题,效果会很差。

解决思路:通过不同词向量之间矩阵相乘,得到一个词与词之间的相似度,进而无距离限制。

整体结构:

multi-head attention:

将一个词的vector切分成h个维度,求attention相似度时每个h维度计算。由于单词映射在高维空间作为向量形式,每一维空间都可以学到不同的特征,相邻空间所学结果更相似,相较于全体空间放到一起对应更加合理。比如对于vector-size=512的词向量,取h=8,每64个空间做一个attention,学到结果更细化。

self-attention:

  每个词位的词都可以无视方向和距离,有机会直接和句子中的每个词encoding。比如下图这个句子,每个单词和同句其他单词之间都有一条边作为联系,边的颜色越深表明联系越强,而一般意义模糊的词语所连的边都比较深。比如:law,application,missing,opinion。

Attention 和self-attention的更多相关文章

  1. 注意力机制---Attention、local Attention、self Attention、Hierarchical attention

    一.编码-解码架构 目的:解决语音识别.机器翻译.知识问答等输出输入序列长度不相等的任务. C是输入的一个表达(representation),包含了输入序列的有效信息. 它可能是一个向量,也可能是一 ...

  2. 可视化展示attention(seq2seq with attention in tensorflow)

    目前实现了基于tensorflow的支持的带attention的seq2seq.基于tf 1.0官网contrib路径下seq2seq 由于后续版本不再支持attention,迁移到melt并做了进一 ...

  3. (转)注意力机制(Attention Mechanism)在自然语言处理中的应用

    注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度 ...

  4. 注意力机制(Attention Mechanism)在自然语言处理中的应用

    注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了 ...

  5. Attention and Augmented Recurrent Neural Networks

    Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sep ...

  6. (转)Attention

        本文转自:http://www.cosmosshadow.com/ml/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C/2016/03/08/Attention.ht ...

  7. Multimodal —— 看图说话(Image Caption)任务的论文笔记(二)引入attention机制

    在上一篇博客中介绍的论文"Show and tell"所提出的NIC模型采用的是最"简单"的encoder-decoder框架,模型上没有什么新花样,使用CNN ...

  8. 深度学习之seq2seq模型以及Attention机制

    RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2se ...

  9. Attention Model(注意力模型)思想初探

    1. Attention model简介 0x1:AM是什么 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但 ...

  10. 【NLP】Attention Model(注意力模型)学习总结

    最近一直在研究深度语义匹配算法,搭建了个模型,跑起来效果并不是很理想,在分析原因的过程中,发现注意力模型在解决这个问题上还是很有帮助的,所以花了两天研究了一下. 此文大部分参考深度学习中的注意力机制( ...

随机推荐

  1. 28. 实现strStr() (双指针)

    实现 strStr() 函数. 给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始).如果不存在,则返 ...

  2. JQuery 操作checkbox

    获取checkbox选中的状态 deleteAll全选的name 1. $("input[name='deleteAll']").is(":checked") ...

  3. Dapr 运用之集成 Asp.Net Core Grpc 调用篇

    前置条件: <Dapr 运用> 改造 ProductService 以提供 gRPC 服务 从 NuGet 或程序包管理控制台安装 gRPC 服务必须的包 Grpc.AspNetCore ...

  4. tabhost改变标签颜色

    package uiframe.zyx.uiframe.com.uiframe.fragments;import android.os.Bundle;import android.support.an ...

  5. WPF特点

    前言:为什么要学习WPF呢?因为随着现阶段硬件技术的升级以及客户对体验的要求越来越高,传统的GDI和USERS(或者是GDI+.USERS)已经不能满足这个需求,因此,WPF技术应运而生. WPF的特 ...

  6. C# 中的 bool、char 和 string 类型

    上一篇(地址:https://www.vinanysoft.com/c-sharp-basics/data-types/fundamental-numeric-types/)只介绍了基本数值类型,本篇 ...

  7. ios学习之路:Xcode+swift+打包ipa一步一坑记录

    咳咳,作为公司的Android开发(兼java接口开发,兼软件测试,兼运维……)由于公司ios开发小伙伴离我而去,ios的app出了问题,急需处理.于是领导决定由我来处理一下.就是用证书重新打包的事儿 ...

  8. day07什么是方法、方法的定义、方法的调用

    复习 1.数组 1)什么是数组 数组就是一种能够保存 多个相同数据类型的数据的变量 2)为什么使用数组 3)数组的构成 3.1)数组名 3.2)数组元素 3.3)数组长度 3.4)数组下标 4)数组的 ...

  9. CentOS 7 安装 Nginx 配置反向代理

    Linux使用Nginx Yum存储库上安装Nginx,适用于Red Hat Enterprise Linux和CentOS系统. 1.添加设置Nginx Yum存储库 在CentOS中首次安装Ngi ...

  10. Pikachu-Sql Inject

    Pikachu-Sql Inject 在owasp发布的top10排行榜里,注入漏洞一直是危害排名第一的漏洞,其中注入漏洞里面首当其冲的就是数据库注入漏洞. 一个严重的SQL注入漏洞,可能会直接导致一 ...