Sum of Different Primes
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3684   Accepted: 2252

Description

A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

Your job is to write a program that reports the number of such ways for the given n and k.

Input

The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

Output

The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

Sample Input

24 3
24 2
2 1
1 1
4 2
18 3
17 1
17 3
17 4
100 5
1000 10
1120 14
0 0

Sample Output

2
3
1
0
0
2
1
0
1
55
200102899
2079324314

题意:

给出n,k问将n分解成k个素数有多少种分法。

分析:

首先使用素数筛筛选出素数。

设dp[i][j]:将j分解成i个素数的方案数,那么:dp[i][j]=dp[i-1][j-su[k]]。

for枚举所有素数

  for枚举1150->1所有的值

    for枚举方案14->1

最后读入n,k直接输出dp[k][n]即可。

AC code:

#include<cstdio>
#include<cstring>
using namespace std;
bool u[];
int su[];
int dp[][];
int psu[];
int num;
void olas()
{
num=;
memset(u,true,sizeof(u));
for(int i=;i<=;i++)
{
if(u[i]) su[num++]=i;
for(int j=;j<num;j++)
{
if(i*su[j]>) break;
u[i*su[j]]=false;
if(i%su[j]==) break;
}
}
psu[]=su[];
for(int i=;i<num;i++)
{
psu[i]=psu[i-]+su[i];
}
}
void pre()
{
dp[][]=;
for(int i=;i<num;i++)
{
for(int j=;j>=;j--)
{
if(j>=su[i])
{
for(int k=;k>=;k--)
{
dp[k][j]+=dp[k-][j-su[i]];
}
}
else break;
}
}
}
int main()
{
int n,k;
olas();
pre();
freopen("input.txt","r",stdin);
while(~scanf("%d%d",&n,&k)&&n&&k)
{
printf("%d\n",dp[k][n]);
}
return ;
}

POJ 3132 DP+素数筛的更多相关文章

  1. codeforces 822 D. My pretty girl Noora(dp+素数筛)

    题目链接:http://codeforces.com/contest/822/problem/D 题解:做这题首先要推倒一下f(x)假设第各个阶段分成d1,d2,d3...di组取任意一组来说,如果第 ...

  2. Codeforces 264B Good Sequences(DP+素数筛)

    题目链接:http://codeforces.com/problemset/problem/264/B 题目大意:给出n个单调递增的数,让你找出最长的好序列,好序列是一种单调递增的并且相邻元素的最大公 ...

  3. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  4. codeforces 569C C. Primes or Palindromes?(素数筛+dp)

    题目链接: C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes in ...

  5. 素数筛 poj 2689

    素数筛 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ...

  6. poj 3048 Max Factor(素数筛)

    这题就是先写个素数筛,存到prime里,之后遍历就好,取余,看是否等于0,如果等于0就更新,感觉自己说的不明白,引用下别人的话吧: 素数打表,找出20000之前的所有素数,存入prime数组,对于每个 ...

  7. POJ 3126 Prime Path (bfs+欧拉线性素数筛)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  8. Prime Path素数筛与BFS动态规划

    埃拉托斯特尼筛法(sieve of Eratosthenes ) 是古希腊数学家埃拉托斯特尼发明的计算素数的方法.对于求解不大于n的所有素数,我们先找出sqrt(n)内的所有素数p1到pk,其中k = ...

  9. Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)

    385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...

随机推荐

  1. PhantomJS简单使用

    PhantomJS下载地址:   http://phantomjs.org/download.html 简单使用: from selenium import webdriver # 要想调用键盘按键操 ...

  2. linux 环境下部署 Asp.Net Core 项目 访问 oralce 数据库

    1.ASP.NET Core 是一个跨平台的高性能开源框架,可以部署到Linux上,那项目部署在Linux上有哪些好处呢? 1.linux硬件需求小,大部分版本免费,成本低. 2.linux的用户管理 ...

  3. 高性能TcpServer(C#) - 5.客户端管理

    高性能TcpServer(C#) - 1.网络通信协议 高性能TcpServer(C#) - 2.创建高性能Socket服务器SocketAsyncEventArgs的实现(IOCP) 高性能TcpS ...

  4. day04 作业

    一.简述Python的五大数据类型的作用.定义方式.使用方法: 数字类型 整型 作用:描述年龄 定义方式: x = 10 y = int('10') 使用方法: + - * / % // ** 如果需 ...

  5. Hadoop 从节点的 NodeManager 无法启动

    一.问题描述 日志文件信息如下: -- ::, INFO nodemanager.NodeManager (LogAdapter.java:info()) - registered UNIX sign ...

  6. Delphi-基础(运算符)

    一.运算符 1.变量 2.运算符** 3.表达式 1.变量 变量解释:编程中最小的存储单元(空间),它的空间大小由它在声明时的数据类型决定. 1.1.声明 : 定义一个变量,告诉Delphi一个名字的 ...

  7. pytest怎么标记用例?

    pytest还有一个很强大的功能,那就是标记用例这个功能,这个功能可真的是很实用哒 首先,我们要实现标记功能,得分为3步走: 1.注册标记 2.标记用例 3.运行已经标记的用例. 那么第一步我们怎么实 ...

  8. JAVAWEB复习笔记-day02

    1.CSS样式优先级 优先级:由上到下,由外到内.优先级越来越高 2.css选择器 html标签选择器 class选择器(.) id选择器(#) 3.优先级 style属性>id选择器>c ...

  9. SQLserver 《深入分析sqlserver 2008》

    PDF版本: 链接:https://pan.baidu.com/s/1bheII-EdyleVJaR5r9lT9Q 提取码:f8zz

  10. 201871010133-赵永军《面向对象程序设计(java)》第十六周学习总结

    201871010133-赵永军<面向对象程序设计(java)>第十六周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ ...