POJ 3132 DP+素数筛
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 3684 | Accepted: 2252 |
Description
A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.
When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.
Your job is to write a program that reports the number of such ways for the given n and k.
Input
The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.
Output
The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.
Sample Input
24 3
24 2
2 1
1 1
4 2
18 3
17 1
17 3
17 4
100 5
1000 10
1120 14
0 0
Sample Output
2
3
1
0
0
2
1
0
1
55
200102899
2079324314
题意:
给出n,k问将n分解成k个素数有多少种分法。
分析:
首先使用素数筛筛选出素数。
设dp[i][j]:将j分解成i个素数的方案数,那么:dp[i][j]=dp[i-1][j-su[k]]。
for枚举所有素数
for枚举1150->1所有的值
for枚举方案14->1
最后读入n,k直接输出dp[k][n]即可。
AC code:
#include<cstdio>
#include<cstring>
using namespace std;
bool u[];
int su[];
int dp[][];
int psu[];
int num;
void olas()
{
num=;
memset(u,true,sizeof(u));
for(int i=;i<=;i++)
{
if(u[i]) su[num++]=i;
for(int j=;j<num;j++)
{
if(i*su[j]>) break;
u[i*su[j]]=false;
if(i%su[j]==) break;
}
}
psu[]=su[];
for(int i=;i<num;i++)
{
psu[i]=psu[i-]+su[i];
}
}
void pre()
{
dp[][]=;
for(int i=;i<num;i++)
{
for(int j=;j>=;j--)
{
if(j>=su[i])
{
for(int k=;k>=;k--)
{
dp[k][j]+=dp[k-][j-su[i]];
}
}
else break;
}
}
}
int main()
{
int n,k;
olas();
pre();
freopen("input.txt","r",stdin);
while(~scanf("%d%d",&n,&k)&&n&&k)
{
printf("%d\n",dp[k][n]);
}
return ;
}
POJ 3132 DP+素数筛的更多相关文章
- codeforces 822 D. My pretty girl Noora(dp+素数筛)
题目链接:http://codeforces.com/contest/822/problem/D 题解:做这题首先要推倒一下f(x)假设第各个阶段分成d1,d2,d3...di组取任意一组来说,如果第 ...
- Codeforces 264B Good Sequences(DP+素数筛)
题目链接:http://codeforces.com/problemset/problem/264/B 题目大意:给出n个单调递增的数,让你找出最长的好序列,好序列是一种单调递增的并且相邻元素的最大公 ...
- poj 2689 区间素数筛
The branch of mathematics called number theory is about properties of numbers. One of the areas that ...
- codeforces 569C C. Primes or Palindromes?(素数筛+dp)
题目链接: C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes in ...
- 素数筛 poj 2689
素数筛 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ...
- poj 3048 Max Factor(素数筛)
这题就是先写个素数筛,存到prime里,之后遍历就好,取余,看是否等于0,如果等于0就更新,感觉自己说的不明白,引用下别人的话吧: 素数打表,找出20000之前的所有素数,存入prime数组,对于每个 ...
- POJ 3126 Prime Path (bfs+欧拉线性素数筛)
Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...
- Prime Path素数筛与BFS动态规划
埃拉托斯特尼筛法(sieve of Eratosthenes ) 是古希腊数学家埃拉托斯特尼发明的计算素数的方法.对于求解不大于n的所有素数,我们先找出sqrt(n)内的所有素数p1到pk,其中k = ...
- Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)
385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...
随机推荐
- 如何优雅地使用腾讯云COS-.NET篇
如何优雅地使用腾讯云COS-.NET篇 代码下载地址 https://github.com/whuanle/txypx20190809 前提 创建子账号 打开 https://console.clou ...
- mockjs 在项目中vue项目中使用
一.为什么要使用mockjs 总结起来就是在后端接口没有开发完成之前,前端可以用已有的接口文档,在真实的请求上拦截ajax,并根据mockjs的mock数据的规则,模拟真实接口返回的数据,并将随机的模 ...
- Eureka自我保护机制源码解析
默认情况下,当EurekaServer在一定时间内(默认90秒)没有接收到某个客户端实例的心跳,EurekaServer将会注销该实例.但是当网络分区故障发生时,客户端与EurekaServer之间无 ...
- js-深拷贝浅拷贝
深拷贝浅拷贝可以考察一个人的很多方面,例如:基本功,逻辑能力,编码能力: 在实际工作中的应用:比如用于页面展示的数据状态,与需要传给后端的数据包中,有部分字段的值不一致的话,就需要在传参时根据接口文档 ...
- sess文件编译输出css的四种方式以及使用
sess文件输出css有下面四种方式: :nested(嵌套) :compact(紧凑) :expanded(展开) :compressed(压缩) 如何使用: sass --watch style. ...
- 基于Docker实现MySQL主从复制
前言 MySQL的主从复制是实现应用的高性能,高可用的基础.对于数据库读操作较密集的应用,通过使数据库请求负载均衡分配到不同MySQL服务器,可有效减轻数据库压力.当遇到MySQL单点故障中,也能在短 ...
- Echarts 柱状图组
通过Echarts可以实现柱状图组,如下图:是一个学生三次模考成绩对比结果 源码 <!DOCTYPE html> <html> <head> <meta ch ...
- liteos软件定时器(十)
1 概述 1.1 基本概念 软件定时器,是基于系统Tick时钟中断且由软件来模拟的定时器,当经过设定的Tick时钟计数值后会触发用户定义的回调函数.定时精度与系统Tick时钟的周期有关. 硬件定时器受 ...
- Java中用import导入类和用Class方法加载类有什么区别?
import仅仅包含导入操作,并不包含将字节码文件加载进内存这一动作,将字节码文件加载进内存是后续的实例化操作完成的. 例如通过import导入了一堆包和类,但是后续什么都没用(没用实例化),那么导入 ...
- Junit框架使用(4)--JUnit常用断言及注解
从别人博客中抄过来一点东西 原文地址:http://blog.csdn.net/wangpeng047/article/details/9628449 断言是编写测试用例的核心实现方式,即期望值是多少 ...