Sum of Different Primes
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3684   Accepted: 2252

Description

A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

Your job is to write a program that reports the number of such ways for the given n and k.

Input

The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

Output

The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

Sample Input

24 3
24 2
2 1
1 1
4 2
18 3
17 1
17 3
17 4
100 5
1000 10
1120 14
0 0

Sample Output

2
3
1
0
0
2
1
0
1
55
200102899
2079324314

题意:

给出n,k问将n分解成k个素数有多少种分法。

分析:

首先使用素数筛筛选出素数。

设dp[i][j]:将j分解成i个素数的方案数,那么:dp[i][j]=dp[i-1][j-su[k]]。

for枚举所有素数

  for枚举1150->1所有的值

    for枚举方案14->1

最后读入n,k直接输出dp[k][n]即可。

AC code:

#include<cstdio>
#include<cstring>
using namespace std;
bool u[];
int su[];
int dp[][];
int psu[];
int num;
void olas()
{
num=;
memset(u,true,sizeof(u));
for(int i=;i<=;i++)
{
if(u[i]) su[num++]=i;
for(int j=;j<num;j++)
{
if(i*su[j]>) break;
u[i*su[j]]=false;
if(i%su[j]==) break;
}
}
psu[]=su[];
for(int i=;i<num;i++)
{
psu[i]=psu[i-]+su[i];
}
}
void pre()
{
dp[][]=;
for(int i=;i<num;i++)
{
for(int j=;j>=;j--)
{
if(j>=su[i])
{
for(int k=;k>=;k--)
{
dp[k][j]+=dp[k-][j-su[i]];
}
}
else break;
}
}
}
int main()
{
int n,k;
olas();
pre();
freopen("input.txt","r",stdin);
while(~scanf("%d%d",&n,&k)&&n&&k)
{
printf("%d\n",dp[k][n]);
}
return ;
}

POJ 3132 DP+素数筛的更多相关文章

  1. codeforces 822 D. My pretty girl Noora(dp+素数筛)

    题目链接:http://codeforces.com/contest/822/problem/D 题解:做这题首先要推倒一下f(x)假设第各个阶段分成d1,d2,d3...di组取任意一组来说,如果第 ...

  2. Codeforces 264B Good Sequences(DP+素数筛)

    题目链接:http://codeforces.com/problemset/problem/264/B 题目大意:给出n个单调递增的数,让你找出最长的好序列,好序列是一种单调递增的并且相邻元素的最大公 ...

  3. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  4. codeforces 569C C. Primes or Palindromes?(素数筛+dp)

    题目链接: C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes in ...

  5. 素数筛 poj 2689

    素数筛 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ...

  6. poj 3048 Max Factor(素数筛)

    这题就是先写个素数筛,存到prime里,之后遍历就好,取余,看是否等于0,如果等于0就更新,感觉自己说的不明白,引用下别人的话吧: 素数打表,找出20000之前的所有素数,存入prime数组,对于每个 ...

  7. POJ 3126 Prime Path (bfs+欧拉线性素数筛)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  8. Prime Path素数筛与BFS动态规划

    埃拉托斯特尼筛法(sieve of Eratosthenes ) 是古希腊数学家埃拉托斯特尼发明的计算素数的方法.对于求解不大于n的所有素数,我们先找出sqrt(n)内的所有素数p1到pk,其中k = ...

  9. Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)

    385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...

随机推荐

  1. 如何优雅地使用腾讯云COS-.NET篇

    如何优雅地使用腾讯云COS-.NET篇 代码下载地址 https://github.com/whuanle/txypx20190809 前提 创建子账号 打开 https://console.clou ...

  2. mockjs 在项目中vue项目中使用

    一.为什么要使用mockjs 总结起来就是在后端接口没有开发完成之前,前端可以用已有的接口文档,在真实的请求上拦截ajax,并根据mockjs的mock数据的规则,模拟真实接口返回的数据,并将随机的模 ...

  3. Eureka自我保护机制源码解析

    默认情况下,当EurekaServer在一定时间内(默认90秒)没有接收到某个客户端实例的心跳,EurekaServer将会注销该实例.但是当网络分区故障发生时,客户端与EurekaServer之间无 ...

  4. js-深拷贝浅拷贝

    深拷贝浅拷贝可以考察一个人的很多方面,例如:基本功,逻辑能力,编码能力: 在实际工作中的应用:比如用于页面展示的数据状态,与需要传给后端的数据包中,有部分字段的值不一致的话,就需要在传参时根据接口文档 ...

  5. sess文件编译输出css的四种方式以及使用

    sess文件输出css有下面四种方式: :nested(嵌套) :compact(紧凑) :expanded(展开) :compressed(压缩) 如何使用: sass --watch style. ...

  6. 基于Docker实现MySQL主从复制

    前言 MySQL的主从复制是实现应用的高性能,高可用的基础.对于数据库读操作较密集的应用,通过使数据库请求负载均衡分配到不同MySQL服务器,可有效减轻数据库压力.当遇到MySQL单点故障中,也能在短 ...

  7. Echarts 柱状图组

    通过Echarts可以实现柱状图组,如下图:是一个学生三次模考成绩对比结果 源码 <!DOCTYPE html> <html> <head> <meta ch ...

  8. liteos软件定时器(十)

    1 概述 1.1 基本概念 软件定时器,是基于系统Tick时钟中断且由软件来模拟的定时器,当经过设定的Tick时钟计数值后会触发用户定义的回调函数.定时精度与系统Tick时钟的周期有关. 硬件定时器受 ...

  9. Java中用import导入类和用Class方法加载类有什么区别?

    import仅仅包含导入操作,并不包含将字节码文件加载进内存这一动作,将字节码文件加载进内存是后续的实例化操作完成的. 例如通过import导入了一堆包和类,但是后续什么都没用(没用实例化),那么导入 ...

  10. Junit框架使用(4)--JUnit常用断言及注解

    从别人博客中抄过来一点东西 原文地址:http://blog.csdn.net/wangpeng047/article/details/9628449 断言是编写测试用例的核心实现方式,即期望值是多少 ...