POJ 3132 DP+素数筛
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 3684 | Accepted: 2252 |
Description
A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.
When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.
Your job is to write a program that reports the number of such ways for the given n and k.
Input
The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.
Output
The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.
Sample Input
24 3
24 2
2 1
1 1
4 2
18 3
17 1
17 3
17 4
100 5
1000 10
1120 14
0 0
Sample Output
2
3
1
0
0
2
1
0
1
55
200102899
2079324314
题意:
给出n,k问将n分解成k个素数有多少种分法。
分析:
首先使用素数筛筛选出素数。
设dp[i][j]:将j分解成i个素数的方案数,那么:dp[i][j]=dp[i-1][j-su[k]]。
for枚举所有素数
for枚举1150->1所有的值
for枚举方案14->1
最后读入n,k直接输出dp[k][n]即可。
AC code:
#include<cstdio>
#include<cstring>
using namespace std;
bool u[];
int su[];
int dp[][];
int psu[];
int num;
void olas()
{
num=;
memset(u,true,sizeof(u));
for(int i=;i<=;i++)
{
if(u[i]) su[num++]=i;
for(int j=;j<num;j++)
{
if(i*su[j]>) break;
u[i*su[j]]=false;
if(i%su[j]==) break;
}
}
psu[]=su[];
for(int i=;i<num;i++)
{
psu[i]=psu[i-]+su[i];
}
}
void pre()
{
dp[][]=;
for(int i=;i<num;i++)
{
for(int j=;j>=;j--)
{
if(j>=su[i])
{
for(int k=;k>=;k--)
{
dp[k][j]+=dp[k-][j-su[i]];
}
}
else break;
}
}
}
int main()
{
int n,k;
olas();
pre();
freopen("input.txt","r",stdin);
while(~scanf("%d%d",&n,&k)&&n&&k)
{
printf("%d\n",dp[k][n]);
}
return ;
}
POJ 3132 DP+素数筛的更多相关文章
- codeforces 822 D. My pretty girl Noora(dp+素数筛)
题目链接:http://codeforces.com/contest/822/problem/D 题解:做这题首先要推倒一下f(x)假设第各个阶段分成d1,d2,d3...di组取任意一组来说,如果第 ...
- Codeforces 264B Good Sequences(DP+素数筛)
题目链接:http://codeforces.com/problemset/problem/264/B 题目大意:给出n个单调递增的数,让你找出最长的好序列,好序列是一种单调递增的并且相邻元素的最大公 ...
- poj 2689 区间素数筛
The branch of mathematics called number theory is about properties of numbers. One of the areas that ...
- codeforces 569C C. Primes or Palindromes?(素数筛+dp)
题目链接: C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes in ...
- 素数筛 poj 2689
素数筛 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ...
- poj 3048 Max Factor(素数筛)
这题就是先写个素数筛,存到prime里,之后遍历就好,取余,看是否等于0,如果等于0就更新,感觉自己说的不明白,引用下别人的话吧: 素数打表,找出20000之前的所有素数,存入prime数组,对于每个 ...
- POJ 3126 Prime Path (bfs+欧拉线性素数筛)
Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...
- Prime Path素数筛与BFS动态规划
埃拉托斯特尼筛法(sieve of Eratosthenes ) 是古希腊数学家埃拉托斯特尼发明的计算素数的方法.对于求解不大于n的所有素数,我们先找出sqrt(n)内的所有素数p1到pk,其中k = ...
- Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)
385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...
随机推荐
- SQL server已经设置为单用户模式,Sql server还原失败数据库正在使用,无法获得对数据库的独占访问权
如果已经设置为单用户模式,还是报这个错误的话,就按照一下SQL执行就
- 关于PHP在企业级开发领域的访谈
企业软件的一个关键元素就是互操作性,它可以让软件与其他平台交换信息.大家都认为PHP在这方面表现欠佳,因为它的WS-*支持相对来说比较新且功能较少,成熟度不高.关于这点我们从未手动开启过PHP的相关进 ...
- jQuery 杂项方法大全
下表列出了所有jQuery 杂项方法: 方法 描述 data() 将数据附加到选定元素或从中获取数据 get() 获取选择器匹配的DOM元素 index() 从匹配的元素中搜索给定的元素 $.noCo ...
- 【Android】天气应用
模仿华为的"天气"应用写的一个小Demo.部分功能.动画效果没有实现,也没有过多考虑性能.Bug等其它方面的因素.写这个Demo的初衷是想熟悉下目前网上常用的一些框架. Demo采 ...
- 配置全文搜索引擎solr
前言 solr是apache下的一个子项目,用java编写基于Lucene开发的全文搜索服务器,不同于Lucene,solr一个完成的搜索服务器,提供了众多接口调用,而Lucene只是个工具包.如果用 ...
- AssetBundleMaster_ReadMe_CN
在开始使用之前, 建议先导入到一个空的工程里, 通过ReadMe的一步步引导使你对整个框架以及文件结构进行熟悉, 之后再考虑导入到现有工程中使用, 完整看完教程大概需要2个小时左右. 先看看文件夹结构 ...
- 使用spring aop 记录接口日志
spring配置文件中增加启用aop的配置 <!-- 增加aop 自动代理配置 --> <aop:aspectj-autoproxy /> 切面类配置 package com. ...
- 201871010104-陈园园 《面向对象程序设计(java)》第七周学习总结
201871010104-陈园园 <面向对象程序设计(java)>第七周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ ...
- web-程序逻辑问题
题目 查看源码 http://ctf5.shiyanbar.com/web/5/index.txt 代码如下 <html> <head> welcome to simplexu ...
- springboot整合邮件
一.邮件相关知识补充 SMTP(Simple Mail Transfer Protocol) 即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式.SMTP协议属 ...