Description

Description

一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四个数,l1,r1,l2,r2,即两个长度相同的区间,表示子串Sl1Sl1+1Sl1+2...Sr1与Sl2Sl2+1Sl2+2...Sr2完全相同。比如n=6时,某限制条件l1=1,r1=3,l2=4,r2=6,那么123123,351351均满足条件,但是12012,131141不满足条件,前者数的长度不为6,后者第二位与第五位不同。问满足以上所有条件的数有多少个。

Input

第一行两个数n和m,分别表示大数的长度,以及限制条件的个数。接下来m行,对于第i行,有4个数li1,ri1,li2,ri2,分别表示该限制条件对应的两个区间。

1≤n≤10^5,1≤m≤10^5,1≤li1,ri1,li2,ri2≤n;并且保证ri1-li1=ri2-li2。

Output

一个数,表示满足所有条件且长度为n的大数的个数,答案可能很大,因此输出答案模10^9+7的结果即可。

Sample Input

4 2
1 2 3 4
3 3 3 3

Sample Output

90

题解思路
先设一个数组f[i][j],表示从i个数开始向后2的j次方个数与从f[i][j]个数开始向后2的j次方个数相同。
对于每两个相等的区间,我们先用倍增将它们划分为多个长度2的次方个小段,再将每一个小段以并查集的方式合并。
这个操作的时间复杂度是O(nlogn)。
然后从2的最大次方开始,若f[i][j]=k,则将其转换为合并f[i][j-1],k以及f[i+2^(j-1)][j],k。
这个操作的时间复杂度也是O(nlogn)的。
最后统计一个s,表示f[i][0]=i的i的个数。
最后用快速幂求出9*(10^(s-1))即可(开头不能为0)(其实龟速乘也可以)
这个的时间复杂度是O(n)的。
所以总的时间复杂度是O(nlogn)
#include<iostream>
#include<cstdio>
using namespace std;
long long n,m,l1,l2,r1,r2,f[100001][21],v[21],cnt=-1,fx,fy,s,ans=1,mod=1000000007;
long long fa(long long id,long long a){
if(f[a][id]!=a)f[a][id]=fa(id,f[a][id]);
return f[a][id];
}
long long find(long long a){
s=10ll;
while(a>0){
if(a%2ll)ans=(ans*s)%mod;
s=(s*s)%mod;
a=a/2ll;
}
}
void merge(long long id,long long x,long long y){
fx=fa(id,x);
fy=fa(id,y);
if(fx!=fy)f[fx][id]=fy;
}
int main(){
v[0]=1;
for(long long i=1;i<=20;i++)v[i]=v[i-1]*2;
scanf("%lld%lld",&n,&m);
for(long long i=1;i<=n;i++)for(long long j=0;j<=20;j++)f[i][j]=i;
for(long long i=1;i<=m;i++){
scanf("%lld%lld%lld%lld",&l1,&r1,&l2,&r2);
for(long long j=20;j>=0;j--){
if(v[j]<=r1-l1+1){
merge(j,l1,l2);
l1=l1+v[j];
l2=l2+v[j];
}
}
}
for(long long i=20;i;i--){
for(long long x=1;x+v[i]-1<=n;x++){
s=fa(i,x);
merge(i-1,x,s);
merge(i-1,x+v[i-1],s+v[i-1]);
}
}
for(long long i=1;i<=n;i++){
s=fa(0,i);
if(s==i)cnt++;
}
find(cnt);
ans=ans*9ll;
ans=ans%mod;
printf("%lld\n",ans);
}

  

 

xsy 2412【BZOJ4569】【Scoi2016】萌萌哒的更多相关文章

  1. BZOJ4569 SCOI2016萌萌哒(倍增+并查集)

    一个显然的暴力是用并查集记录哪些位之间是相等的.但是这样需要连nm条边,而实际上至多只有n条边是有用的,冗余过多. 于是考虑优化.使用类似st表的东西,f[i][j]表示i~i+2^j-1与f[i][ ...

  2. [BZOJ4569][SCOI2016]萌萌哒(倍增+并查集)

    首先有一个显然的$O(n^2)$暴力做法,将每个位置看成点,然后将所有限制相等的数之间用并查集合并,最后答案就是9*(10^连通块的个数).(特判n=1时就是10). 然后比较容易想到的是,由于每次合 ...

  3. BZOJ4569 [SCOI2016]萌萌哒 【并查集 + 倍增】

    题目链接 BZOJ4569 题解 倍增的思想很棒 题目实际上就是每次让我们合并两个区间对应位置的数,最后的答案\(ans = 9 \times 10^{tot - 1}\),\(tot\)是联通块数, ...

  4. BZOJ4569 : [Scoi2016]萌萌哒

    建立ST表,每层维护一个并查集. 每个信息可以拆成两条长度为$2$的幂次的区间相等的信息,等价于ST表里两对点的合并. 然后递归合并,一旦发现已经合并过了就退出. 因为一共只会发生$O(n\log n ...

  5. 2018.07.31 bzoj4569: [Scoi2016]萌萌哒(并查集+倍增)

    传送门 对于每个限制,使用倍增的二进制拆分思想,用并查集数组fa[i][j]" role="presentation" style="position: rel ...

  6. bzoj4569: [Scoi2016]萌萌哒(ST表+并查集)

    好喵喵的题 将一个要求用ST表分割成logn个要求,如果把f[i][j]和f[u][v]在同一个集合,那么f[i][j-1]和f[u][v-1],f[i+2^(j-1)][j-1]和f[u][u+2^ ...

  7. [bzoj4569][SCOI2016]萌萌哒-并查集+倍增

    Brief Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条 件表示为四个数,l1,r1,l2,r2,即两 ...

  8. BZOJ4569 [Scoi2016]萌萌哒(并查集,倍增)

    类似\(ST表\)的思想,倍增\(log(n)\)地合并 你是我家的吗?不是就来呀啦啦啦.还有要来的吗?没了!那有多少个家就映射多少答案呀 倍增原来这么好玩 #include <iostream ...

  9. 【BZOJ4569】[Scoi2016]萌萌哒 倍增+并查集

    [BZOJ4569][Scoi2016]萌萌哒 Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四 ...

  10. [BZOJ4569] [Luogu 3295] [SCOI2016]萌萌哒(并查集+倍增)

    [BZOJ4569] [Luogu 3295] [SCOI2016]萌萌哒(并查集+倍增) 题面 有一个n位的十进制数a(无前导0),给出m条限制,每条限制\((l_1,r_1,l_2,r_2)(保证 ...

随机推荐

  1. select下拉框多选取值

    本来是单选取值,现改为多选 其中<select> 标签新增multiple属性,如<select id = "sel"  multiple = "mul ...

  2. 2019 SDN上机第一次实验作业

    1. 安装轻量级网络仿真工具Mininet 先从GitHub上获取mininet源码,再输入命令进行安装,代码分别如下: git clone https://github.com/mininet/mi ...

  3. JVM 启动类加载器2

    在运行期,一个Java类是由该类的完全限定名(binary name,二进制名)和用于加载该类的定义类加载器(defining loading)所共同决定的.如果同样名字(即相同的完全限定名)的类由两 ...

  4. SiamRPN: High Performance Visual Tracking with Siamese Region Proposal Network

    High Performance Visual Tracking with Siamese Region Proposal Network 2018-11-26 18:32:02 Paper:http ...

  5. 【django学习】request.POST与request.POST.get两者主要区别

    本文链接:https://blog.csdn.net/xun527/article/details/87777576request.POST是用来接收前端传过来的数据 一.request.POST.g ...

  6. 我大概知道他在说什么了,是对内存单元的竞争访问吧。Python有GIL,在执行伪码时是原子的。但是伪码之间不保证原子性。 UDP丢包,你是不是做了盲发?没有拥塞控制的情况下,确实会出现丢包严重的情况。你先看看发送速率,还有是否带有拥塞控制。

    我大概知道他在说什么了,是对内存单元的竞争访问吧.Python有GIL,在执行伪码时是原子的.但是伪码之间不保证原子性.   UDP丢包,你是不是做了盲发?没有拥塞控制的情况下,确实会出现丢包严重的情 ...

  7. C# 获取Windows 设备信息

    namespace Beisen.Native { using Beisen.Pdf; using System; using System.Runtime.InteropServices; inte ...

  8. ActionBar 自定义布局定义

    ActionBar 自定义布局定义   Android系统中ActionBar默认的布局不美观且难于控制,通过为ActionBar自定义布局的方式可以灵活控制ActionBar. 效果: 工具/原料 ...

  9. 无法调用到appcode下的类

    解决方法: 右键 appp_code下的类, 点击 “属性”, 里面 [生成操作] 一项 由内容 改为 编译 即可

  10. Vuex 的使用 State Mutation Getter Action

    import Vue from 'vue' import Vuex from 'vuex' Vue.use(Vuex); /*1.state在vuex中用于存储数据*/ var state={ cou ...