On-line fusion of trackers for single-object tracking
On-line fusion of trackers for single-object tracking
Pattern Recognition, 2018 - Elsevier
2019-08-18 22:31:01
Paper: https://www.sciencedirect.com/science/article/pii/S0031320317303783
1. Background and Motivation:
As we all known, regular single object trackers are easily influenced by chanllenging factors and NO single tracker can handle all these factors well. And different trackers may works well under different scenario, therefore, how to fuse existing trackers to achieve robust tracking is a worthy studying research topic, right? The authors classified existing multi-tracker fusion based algorithms into two main categoreis:
1). passive fusion: only combine trackers outputs with no interaction between the trackers.
2). active fusion: integrate data provided by each tracker with the objective of correcting their inner model when necessary.
In addition, the authors also classified existing multi-tracker fusion techniques into the following three kinds:
The authors state that the active fusion leads in general to better performance, but necessitates a control over tracker components and update mechanisms. This paper inroduce a complementarity measure between trackers based on individual drift measures to predict the fusion performance of the combined trackers in order to select it.
2. Offline tracker evaluation.
The first thing before tracking fusion is to evaluate the tracking performance of each tracker, then, we can design novel strategy to fuse them. The authors propose two kinds of evaulate methods, i.e. the gobal evaluation and local evaluation method:
2.1 Global evaluation.
In this section, the authors only simply give an introduction about evaluation metric of VOT challenging competition, i.e. the accuracy and robustness.
2.2 Local evaluation.
In addition to the global evaluation, the authors also introduced a fine-grained local evaluation method, named "incompleteness".
Incmpleteness is used to define the inability of the trackers to compensate collectively for drifting, and is computed as the number of times when all trackers are simultaneously drifting at the same time (所有跟踪算法同时失效的次数). Formally, the incompleteness I of a set of M trackers on a database of N frames as:
where the $d_t^i$ is the variable used to indicate the tracker $T_i$ is drifting or not.
3. Online tracker failure prediction.
The authors attempt to predict tracking failures from a set of M parallel trackers T = [T1, T2, ... , TM], either individually or collectively. They use three ways to estimate the tracking failure.
3.1 Behavioral Indicators (BI)
They consider three kinds of information from used trackers, i.e. the confidence score, the score map and specific indicators.
confidence score: this is a popular used criterion to measure the tracker is drift or not. Because they assume the score will be high, when the tracker works well, but rather low when failure.
score map: the tracker usually predict their bounding box based on this response map.
specific indicator: designed for more complicated trackers.
3.2 Box Filtering (BF)
When the current estimated location of the target from tracker is very far from the previous estimated location output by fusion.
3.3 Box Consensus (BC)
The principle of this criterion is they think: only few trackers in a given collections are likely to drift. They think the outlier is the failed tracker.
4. Proposed Fusion Method
如上图所示,作者将整个跟踪过程分为四个阶段:同时进行多跟踪器的跟踪,跟踪器选择,跟踪器融合,跟踪器的校正。
4.1 Tracker parallel running:
就是同时跑多个跟踪算法;
4.2 Tracker selection by on-line failure prediction:
从上述跟踪算法的结果中,进行 failure 的预测,然后选择那些高置信度的结果。
4.3 Fusion bounding box computation
在拿到所要融合的 Bbox 之后,作者用如下两种方法进行融合:
1)平均处理:即,将多个 BBox 的坐标进行平均,融合为一个结果。
2)Center of gravity (Gray):加权 k个 box 。
6.4 Tracker correlation:
作者提出了三种方法来校正跟踪模型:
==
On-line fusion of trackers for single-object tracking的更多相关文章
- Motion-Based Multiple Object Tracking
kalman filter tracking... %% Motion-Based Multiple Object Tracking % This example shows how to perfo ...
- Object Tracking Benchmark
Abstract 问题: 1)evaluation is often not suffcient 2)biased for certain types of algorthms 3)datasets ...
- Online Object Tracking: A Benchmark 论文笔记(转)
转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...
- 基于粒子滤波的物体跟踪 Particle Filter Object Tracking
Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...
- 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...
- [Object Tracking] Overview of algorithms for Object Tracking
From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...
- CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结
本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...
- Online Object Tracking: A Benchmark 论文笔记
Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...
- correlation filters in object tracking
http://www.cnblogs.com/hanhuili/p/4266990.html Correlation Filter in Visual Tracking系列一:Visual Objec ...
随机推荐
- Android为TV端助力之解析序列话的JSON
解析json时报错default constructor not found. class............. 比如 public class MediaRepBean implements P ...
- java requestmapping中关于路径的问题
需要这种url写的方式才能映射
- 免费的天气API测试接口
网上几乎所有的天气接口都需要注册key,然后还各种频率限制,每天调用次数才几百次? 太坑爹了吧 一个简单的天气预报功能, 为什么要搞的这么复杂, 收什么费? 推荐一个真正免费的天气API接口, 返回j ...
- Docker-compose(创建容器)
Docker-compose(创建容器) 本文原始地址:https://sitoi.cn/posts/23955.html 样例 version: "2" services: sp ...
- Linux CentOs下安装lnmp
1.下载源码包 以root目录为例: cd ~ # 下载安装包 wget http://nginx.org/download/nginx-1.17.2.tar.gz # nginx wget http ...
- mysql - Centos安装MySQL
环境:Centos7.3 No.1 切换为root用户,是则略过 su root No.2 下载MySQL的repo源 wget http://repo.mysql.com/mysql-communi ...
- 状压dp之位运算
## 一.知识 1.我们知道计算机中数据由二进制数存储,一个二进制数的一位就是计算机中数据的最小单位bit,我们有一种运算符可直接对二进制数进行位运算,所以它的速度很快. 2.C++中的位运算符有6种 ...
- Python 字符串正则处理实例
#coding:utf-8 ''' Created on 2017��9��6�� @author: li.liu ''' from selenium import webdriver from se ...
- NumPy的Linalg线性代数库探究
1.矩阵的行列式 from numpy import * A=mat([[1,2,4,5,7],[9,12,11,8,2],[6,4,3,2,1],[9,1,3,4,5],[0,2,3,4,1]]) ...
- 【Java】《Java程序设计基础教程》第七、八章学习
第七章 异常处理 通过try...catch...finally结构来捕获一个或多个异常 第八章 Java的输入与输出及文件操作 8.1 文件 File类常用的方法 1. public boolean ...