还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率

这样的话就相对好算了.

那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可.

然后发现四个角的面积会被重复统计,所以再减去 $4$ 个角的贡献即可.

#include <bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
double sq(double x) { return x*x; }
int main()
{
// setIO("input");
int k,n,m,i,j;
scanf("%d%d%d",&k,&n,&m);
double ans=0.0;
for(i=1;i<=n;++i)
{
for(j=1;j<=m;++j)
{
double a=(j-1)*n;
double b=(m-j)*n;
double c=(n-i)*m;
double d=(i-1)*m;
double d1=(i-1)*(j-1);
double d2=(i-1)*(m-j);
double d3=(n-i)*(j-1);
double d4=(n-i)*(m-j);
double tot1=(sq(a)+sq(b)+sq(c)+sq(d)-sq(d1)-sq(d2)-sq(d3)-sq(d4));
double tot2=sq(n*m);
// printf("%.2f\n",tot1/tot2);
ans+=1.0-pow(tot1/tot2,k);
}
}
printf("%.0lf\n",ans);
return 0;
}

  

bzoj 2969: 矩形粉刷 概率期望+快速幂的更多相关文章

  1. bzoj 2969: 矩形粉刷 概率期望

    题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...

  2. BZOJ 2969: 矩形粉刷(期望)

    BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k ...

  3. bzoj2969 矩形粉刷 概率期望

    此题在bzoj是权限题,,,所以放另一个oj的链接 题解: 因为期望线性可加,所以可以对每个方格单独考虑贡献.每个方格的贡献就为至少被粉刷过一次的概率×1(每个格子的最大贡献就是1...)每个方格至少 ...

  4. 【BZOJ2969】矩形粉刷 概率+容斥

    [BZOJ2969]矩形粉刷 Description 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以 ...

  5. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  6. BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)

    BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...

  7. Scout YYF I (概率+矩阵快速幂)

    YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's ba ...

  8. 【BZOJ】1008: [HNOI2008]越狱(快速幂)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1008 刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还 ...

  9. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

随机推荐

  1. leetcode两数相加

    题目描述:给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. 如果,我们将这两个数相加起来,则会返回一个新的链表来表 ...

  2. 在内网中 vue项目添加ECharts图表插件

    原文地址:https://www.cnblogs.com/aknife/p/11753854.html 最近项目中要使用到图表 但是项目在内网中无法直接使用命令安装 然后我在外网中弄个vue的项目(随 ...

  3. Java 二叉搜索树 实现和学习

    /** * <html> * <body> * <P> Copyright 1994 JsonInternational</p> * <p> ...

  4. Matlab图像处理基础知识

    Matlab图像处理基础知识 Matlab的图片以矩阵的形式存储,矩阵的行列值为图片的行列的色彩值. 1图像表达方式: 像素索引 图像被视为离散单元.如使用I(2,2)可以获取第二行第二列的像素值 空 ...

  5. android 常用库的地址--dialog,recycler

    android 弹出框     https://github.com/li-xiaojun/XPopup android  RecyclerViewAdapter     https://github ...

  6. 使用CertUtil.exe下载远程文件

    使用CertUtil.exe下载远程文件 证书 https://www.cnblogs.com/17bdw/p/8728656.html 1.前言 经过国外文章信息,CertUtil.exe下载恶意软 ...

  7. centos7 设置 查看 开机 启动项

    1.查看开机自启项centos7自启项已不用chkconfig改为:systemctl list-unit-files左边是服务名称,右边是状态,enabled是开机启动,disabled是开机不启动 ...

  8. 平衡二叉树详解——PHP代码实现

    一.什么是平衡二叉树 平衡二叉树(Self-Balancing Binary Search Tree 或者 Height-Balancing Binary Search Tree)译为 自平衡的二叉查 ...

  9. SASS系列之:!global VS !deafult

    先脑补两组场景. 场景一: 同事们每天中午都会外出吃饭.通常情况下都会先问,去哪儿吃啊?不知道啊?下楼再说吧.到了楼下好不容易有个人站出来说,既然没人说我可就说了啊,咱们去吃香草香草吧.没人反对就去, ...

  10. Android studio来开发移动App--SQA计划和系统测试规程

    概述 团队分工 产品需求 团队合作 每日例会 思维导图 UML 产品代码 团队分工 成员:刘鹏芝,罗樟,王小莉,沈兴艳,徐棒,彭康明,胡广键 产品用户:王小莉 需求规约:彭康明,罗樟 UML:刘鹏芝, ...