背景

秒杀活动是绝大部分电商选择的低价促销、推广品牌的方式。不仅可以给平台带来用户量,还可以提高平台知名度。一个好的秒杀系统,可以提高平台系统的稳定性和公平性,获得更好的用户体验,提升平台的口碑,从而提升秒杀活动的最大价值。

本文讨论云数据库Redis版缓存设计高并发的秒杀系统。

秒杀的特征

秒杀活动对稀缺或者特价的商品进行定时定量售卖,吸引成大量的消费者进行抢购,但又只有少部分消费者可以下单成功。因此,秒杀活动将在较短时间内产生比平时大数十倍,上百倍的页面访问流量和下单请求流量。

秒杀活动可以分为3个阶段:

  • 秒杀前:用户不断刷新商品详情页,页面请求达到瞬时峰值。
  • 秒杀开始:用户点击秒杀按钮,下单请求达到瞬时峰值。
  • 秒杀后:一部分成功下单的用户不断刷新订单或者产生退单操作,大部分用户继续刷新商品详情页等待退单机会。

消费者提交订单,一般做法是利用数据库的行级锁,只有抢到锁的请求可以进行库存查询和下单操作。但是在高并发的情况下,数据库无法承担如此大的请求,往往会使整个服务blocked,在消费者看来就是服务器宕机。

秒杀系统

秒杀系统的流量虽然很高,但是实际有效流量是十分有限的。利用系统的层次结构,在每个阶段提前校验,拦截无效流量,可以减少大量无效的流量涌入数据库。

利用浏览器缓存和CDN抗压静态页面流量

秒杀前,用户不断刷新商品详情页,造成大量的页面请求。所以,我们需要把秒杀商品详情页与普通的商品详情页分开。对于秒杀商品详情页尽量将能静态化的元素静态化处理,除了秒杀按钮需要服务端进行动态判断,其他的静态数据可以缓存在浏览器和CDN上。这样,秒杀前刷新页面导致的流量进入服务端的流量只有很小的一部分。

利用读写分离Redis缓存拦截流量

CDN是第一级流量拦截,第二级流量拦截我们使用支持读写分离的Redis。在这一阶段我们主要读取数据,读写分离Redis能支持高达60万以上qps,完全可以支持需求。

首先通过数据控制模块,提前将秒杀商品缓存到读写分离Redis,并设置秒杀开始标记如下:

"goodsId_count": 100 //总数
"goodsId_start": 0 //开始标记
"goodsId_access": 0 //接受下单数
  1. 秒杀开始前,服务集群读取goodsId_Start为0,直接返回未开始。

  2. 数据控制模块将goodsId_start改为1,标志秒杀开始。

  3. 服务集群缓存开始标记位并开始接受请求,并记录到redis中goodsId_access,商品剩余数量为(goodsId_count - goodsId_access)。

  4. 当接受下单数达到goodsId_count后,继续拦截所有请求,商品剩余数量为0。

可以看出,最后成功参与下单的请求只有少部分可以被接受。在高并发的情况下,允许稍微多的流量进入。因此可以控制接受下单数的比例。

利用主从版Redis缓存加速库存扣量

成功参与下单后,进入下层服务,开始进行订单信息校验,库存扣量。为了避免直接访问数据库,我们使用主从版Redis来进行库存扣量,主从版Redis提供10万级别的QPS。使用Redis来优化库存查询,提前拦截秒杀失败的请求,将大大提高系统的整体吞吐量。

通过数据控制模块提前将库存存入Redis,将每个秒杀商品在Redis中用一个hash结构表示。

"goodsId" : {
"Total": 100
"Booked": 100
}

扣量时,服务器通过请求Redis获取下单资格,通过以下lua脚本实现,由于Redis是单线程模型,lua可以保证多个命令的原子性。

local n = tonumber(ARGV[1])
if not n or n == 0 then
return 0
end
local vals = redis.call("HMGET", KEYS[1], "Total", "Booked");
local total = tonumber(vals[1])
local blocked = tonumber(vals[2])
if not total or not blocked then
return 0
end
if blocked + n <= total then
redis.call("HINCRBY", KEYS[1], "Booked", n)
return n;
end
return 0

先使用SCRIPT LOAD将lua脚本提前缓存在Redis,然后调用EVALSHA调用脚本,比直接调用EVAL节省网络带宽:

redis 127.0.0.1:6379>SCRIPT LOAD "lua code"
"438dd755f3fe0d32771753eb57f075b18fed7716"
redis 127.0.0.1:6379>EVAL 438dd755f3fe0d32771753eb57f075b18fed7716 1 goodsId 1

秒杀服务通过判断Redis是否返回抢购个数n,即可知道此次请求是否扣量成功。

使用主从版Redis实现简单的消息队列异步下单入库

扣量完成后,需要进行订单入库。如果商品数量较少的时候,直接操作数据库即可。如果秒杀的商品是1万,甚至10万级别,那数据库锁冲突将带来很大的性能瓶颈。因此,利用消息队列组件,当秒杀服务将订单信息写入消息队列后,即可认为下单完成,避免直接操作数据库。

  1. 消息队列组件依然可以使用Redis实现,在R2中用list数据结构表示。
 orderList {
[0] = {订单内容}
[1] = {订单内容}
[2] = {订单内容}
...
}

2.将订单内容写入Redis:

LPUSH orderList {订单内容}

3.异步下单模块从Redis中顺序获取订单信息,并将订单写入数据库。

 BRPOP orderList 0

通过使用Redis作为消息队列,异步处理订单入库,有效的提高了用户的下单完成速度。

数据控制模块管理秒杀数据同步

最开始,利用读写分离Redis进行流量限制,只让部分流量进入下单。对于下单检验失败和退单等情况,需要让更多的流量进来。因此,数据控制模块需要定时将数据库中的数据进行一定的计算,同步到主从版Redis,同时再同步到读写分离的Redis,让更多的流量进来。

https://help.aliyun.com/document_detail/63920.html?spm=a2c4g.11186623.4.1.551a6d9f9rnsDa

使用Redis搭建电商秒杀系统的更多相关文章

  1. TP5使用Redis处理电商秒杀

    本篇文章介绍了ThinkPHP使用Redis实现电商秒杀的处理方法,具有一定的参考价值,希望对学习ThinkPHP的朋友有帮助! TP5使用Redis处理电商秒杀 1.首先在TP5中创建抢购活动所需要 ...

  2. php+redis实现电商秒杀功能

    这一次总结和分享用Redis实现分布式锁来完成电商的秒杀功能.先扯点个人观点,之前我看了一篇博文说博客园的文章大部分都是分享代码,博文里强调说分享思路比分享代码更重要(貌似大概是这个意思,若有误请谅解 ...

  3. Web系统大规模并发——电商秒杀与抢购

    电商的秒杀和抢购,对我们来说,都不是一个陌生的东西.然而,从技术的角度来说,这对于Web系统是一个巨大的考验.当一个Web系统,在一秒钟内收到数以万计甚至更多请求时,系统的优化和稳定至关重要.这次我们 ...

  4. Web系统大规模并发——电商秒杀与抢购 【转】

    电商的秒杀和抢购,对我们来说,都不是一个陌生的东西.然而,从技术的角度来说,这对于Web系统是一个巨大的考验.当一个Web系统,在一秒钟内收到数以万计甚至更多请求时,系统的优化和稳定至关重要.这次我们 ...

  5. 徐汉彬:Web系统大规模并发——电商秒杀与抢购(转)

    [导读]徐汉彬曾在阿里巴巴和腾讯从事4年多的技术研发工作,负责过日请求量过亿的Web系统升级与重构,目前在小满科技创业,从事SaaS服务技术建设. 电商的秒杀和抢购,对我们来说,都不是一个陌生的东西. ...

  6. 【问底】徐汉彬:Web系统大规模并发——电商秒杀与抢购

    [导读]徐汉彬曾在阿里巴巴和腾讯从事4年多的技术研发工作,负责过日请求量过亿的Web系统升级与重构,目前在小满科技创业,从事SaaS服务技术建设. 电商的秒杀和抢购,对我们来说,都不是一个陌生的东西. ...

  7. 徐汉彬:Web系统大规模并发——电商秒杀与抢购

    [导读]徐汉彬曾在阿里巴巴和腾讯从事4年多的技术研发工作,负责过日请求量过亿的Web系统升级与重构,目前在小满科技创业,从事SaaS服务技术建设. 电商的秒杀和抢购,对我们来说,都不是一个陌生的东西. ...

  8. 从电商秒杀与抢购谈Web系统大规模并发

    从电商秒杀与抢购谈Web系统大规模并发 http://www.iamlintao.com/4242.html 一.大规模并发带来的挑战 在过去的工作中,我曾经面对过5w每秒的高并发秒杀功能,在这个过程 ...

  9. Web系统大规模并发:电商秒杀与抢购-----面试必问

    一.大规模并发带来的挑战 在过去的工作中,我曾经面对过5w每秒的高并发秒杀功能,在这个过程中,整个Web系统遇到了很多的问题和挑战.如果Web系统不做针对性的优化,会轻而易举地陷入到异常状态.我们现在 ...

随机推荐

  1. 新的部署架构之下,如何拿shell?

    和朋友聊起一个话题,服务器部署架构升级对安全的影响.从最简单的一台服务器,到应用.数据库.文件服务器分离:从本地机房服务器到云服务器产品矩阵:从虚拟化到容器化部署,一直在往更安全的方向改变. 本文试图 ...

  2. ActiveMQ使用Zookeeper+LevelDb配置Master/Slave集群

    前言: 本文介绍的AMQ集群是Master-Slave模式的,官网介绍三种方案: (1)基于共享文件系统的,(2)基于JDBC,(3)基于可复制的LevelDB. 关于三种方式的对比网上已经有很多,本 ...

  3. NoSQL之redis用法

    什么是NoSQL? 泛指非关系型的数据库 不支持SQL语法 存储结构跟传统关系型数据库中的那种关系表完全不同,nosql中存储的数据都是Key-Value(即键值对关系)形式 NoSQL的世界中没有一 ...

  4. 【VS2019】Web项目发布时提示无法连接FTP服务器

    使用 Visual Studio 2019 时出现的问题 环境:win10 ltsc 场景 发布Web项目到FTP时 失败,并提示 _无法打开网站"ftp://...".未安装与 ...

  5. 如何简单使用tensorboard展示(二)

    我使用tensorboard继续做了标量展示与直方图展示,在一的基础做了拓展,其改写代码如下: import numpy as npimport tensorflow as tfimport rand ...

  6. 开发工具--浅谈Git

    工具|浅谈Git Git这个工具,是我一直想写文章,终于我实现了我的想法.在我开始写之前,发表一下自己的看法,git只是一个工具,既然已经认定是一个工具,那么一定具备工具这类的共同特征,请用面向对象的 ...

  7. 设计模式之(十四)责任链模式(Chain of Responsibility)

    在业务场景中,有很多是需要审批的.审核方式还可能常常发生变化,而责任链模式就是为了解决这种场景的情况的. 责任链模式定义:十多个对象都有机会处理请求,从而避免发送者和接受者之间的耦合关系.讲这些对象连 ...

  8. 实验吧——认真一点(绕过空格,逗号,关键字过滤等 sql盲注)

    题目地址:http://ctf5.shiyanbar.com/web/earnest/index.php 过滤和拦截了某些东西,我经过多次尝试,最终构造的是 1'=(ascii(mid((select ...

  9. Java中 / 和 %

    Java中 / 和 % 每天积累一些 Java 的知识点,补充自己的不足. 今天在刷面试题的碰到 % ,一下子还真想不起来这个运算符的作用,赶紧重温一下,这里我写了个小代码来体现 / 和 % 的区别. ...

  10. Ubuntu拒绝root用户ssh远程登录

    sudo vim /etc/ssh/sshd_config 找到并用#注释掉这行:PermitRootLogin prohibit-password 新建一行 添加:PermitRootLogin y ...