BZOJ 5305: [Haoi2018]苹果树 组合计数
一定要注意要乘阶乘,细节很多.
code:
#include <bits/stdc++.h>
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
const int N=2007;
int n,mod;
int C[N][N],fac[N],g[N],f[N];
void Init()
{
fac[0]=C[0][0]=1;
for(int i=1;i<=n;++i)
{
C[i][0]=C[i][i]=1;
fac[i]=(ll)fac[i-1]*i%mod;
for(int j=1;j<=i-1;++j) C[i][j]=(ll)(C[i-1][j]+C[i-1][j-1])%mod;
}
}
int main()
{
// setIO("input");
scanf("%d%d",&n,&mod);
Init();
f[1]=1;
for(int i=2;i<=n;++i)
{
for(int L=0;L<=i-1;++L)
{
int R=i-1-L,F=0,G=0;
F=(ll)((ll)f[L]*fac[R]%mod+(ll)f[R]*fac[L]%mod)%mod;
G=(1ll*f[L]*fac[R]%mod*(R+1)%mod)%mod;
G=(G+1ll*f[R]*fac[L]%mod*(L+1)%mod)%mod;
G=(G+1ll*g[L]*fac[R]%mod)%mod;
G=(G+1ll*g[R]*fac[L]%mod)%mod;
f[i]=(f[i]+1ll*C[i-1][L]*F%mod)%mod;
g[i]=(g[i]+1ll*C[i-1][L]*G%mod)%mod;
}
f[i]=(ll)(f[i]+(ll)i*fac[i]%mod)%mod;
}
printf("%d\n",g[n]);
return 0;
}
BZOJ 5305: [Haoi2018]苹果树 组合计数的更多相关文章
- BZOJ.5305.[HAOI2018]苹果树(组合 计数)
LOJ BZOJ 洛谷 BZOJ上除了0ms的Rank1啦.明明这题常数很好优化的. 首先,\(n=1\)时有\(2\)个位置放叶子,\(n=2\)时有\(3\)个... 可知\(n\)个点的有标号二 ...
- luoguP4492 [HAOI2018]苹果树 组合计数 + dp
首先,每个二叉树对应着唯一的中序遍历,并且每个二叉树的概率是相同的 这十分的有用 考虑\(dp\)求解 令\(f_i\)表示\(i\)个节点的子树,根的深度为\(1\)时,所有点的期望深度之和(乘\( ...
- bzoj 5305: [Haoi2018]苹果树
Description Solution \(n\) 个点的二叉树的方案数是 \(n!\) 证明十分显然:新加入的点占掉了 \(1\) 个位置,新加了 \(2\) 个位置,那么多出来一个位置,所以第 ...
- [HAOI2018]苹果树(组合数学,计数)
[HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
随机推荐
- C++实现 企业信息管理系统
2.1总体需求 2.2管理需求 3.总体架构 由于代码量比较大,请移步GitHub或码云 码云:传送门 , GitHub:传送门 话不多说,直接上效果 我是在Linux Ubuntu1 ...
- Visual Studio 2019激活
Visual Studio 2019 Enterprise BF8Y8-GN2QH-T84XB-QVY3B-RC4DF Visual Studio 2019 Professional NYWVH-HT ...
- java之spring mvc之helloworld
这篇主要讲解springmvc的基本的使用,这里以helloworld项目为例. 目录结构: 1. 新建 web 项目 :springmvc_helloworld 2. 在 WebRoot\WEB-I ...
- 玩转dockerfile
镜像的缓存特性 Docker 会缓存已有镜像的镜像层,构建新镜像时,如果某镜像层已经存在,就直接使用,无需重新创建. 举例说明.在前面的 Dockerfile 中添加一点新内容,往镜像中复制一个文件: ...
- Fedora 30系统的升级方法
Fedora 30 已经发布了.你可能希望将系统升级到最新版本的 Fedora.Fedora 工作站版本有图形化升级的方法.另外,Fedora 也提供了一个命令行方法,用于将 Fedora 29 升级 ...
- pandas-15 df['one_col'].apply()方法的用法
pandas-15 df['one_col'].apply()方法的用法 apply有点像map的用法,可以传入一个函数. 如:df['A'].apply(str.upper) import nump ...
- vue页面跳转拦截器
登录拦截逻辑 第一步:路由拦截 首先在定义路由的时候就需要多添加一个自定义字段requireAuth,用于判断该路由的访问是否需要登录.如果用户已经登录,则顺利进入路由, 否则就进入登录页面.在路由管 ...
- Swiper4的基本使用
基本介绍: 中文文档地址:https://www.swiper.com.cn/ 它是一个开源,免费,强大的触摸滑动插件. 它是用纯Javascript打造的滑动特效插件,既可用于PC端,也可用于移动端 ...
- mouseover和mouseenter两个事件的区别
mouseover(鼠标覆盖) mouseenter(鼠标进入) 二者的本质区别在于,mouseenter不会冒泡,简单的说,它不会被它本身的子元素的状态影响到.但是mouseover就会被它的子元素 ...
- 存储管理器 S3C2440A
CPU通过存储管理器来控制外部设备 SDRAM存储结构 S3C2440A内存控制器 原理图 HY57V561620(L)T 4Banks x 4M x 16Bit Synchronous DRAM S ...