题目描述 Description
 给一棵N个节点的无根树,求路径长度=K的简单路径数
输入描述 Input Description

第一行两个正整数N,K

接下来N-1行,每行两个正整数x,y,表示一条边(x,y)

输出描述 Output Description
一行一个整数,答案
样例输入 Sample Input
4 2
1 2
2 3
2 4
样例输出 Sample Output
3
数据范围及提示 Data Size & Hint
对于30% 2<=K,N<=1000

对于100%,2<=K,N<=10^5

还是一道点分治的题,和POJ1741唯一的区别就是一个是找路径<=k的,一个是找等于k的。两个算法唯一的区别就是在处理dis数组的区别。对于在一个有序表中O(n)的求数对满足两个数的和等于K,我想不到什么比较好的方法,所以导致处理算ans时写的比较丑。

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
typedef long long LL;
#define Pi acos(-1.0)
inline int read()
{
int x=,f=;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-;c=getchar();}
while(isdigit(c)){x=x*+c-'';c=getchar();}
return x*f;
}
const int maxn=;
struct Edge
{
int u,v,next;
Edge() {}
Edge(int _1,int _2,int _3) : u(_1),v(_2),next(_3) {}
}e[*maxn];
int first[maxn],n,k,a,b,size[maxn],masize[maxn],now_size,root,dis[maxn],end;
bool vis[maxn];
LL ans;
void addEdge(int i,int a,int b)
{
e[i]=Edge(a,b,first[a]);
first[a]=i;
}
void gets(int u,int pa)
{
size[u]=;
masize[u]=;
for(int i=first[u];i!=-;i=e[i].next)
if(!vis[e[i].v] && e[i].v!=pa)
{
gets(e[i].v,u);
size[u]+=size[e[i].v];
masize[u]=max(size[e[i].v],masize[u]);
}
}
void getr(int r,int u,int pa)
{
masize[u]=max(masize[u],size[r]-size[u]);
if(masize[u]<now_size)now_size=masize[u],root=u;
for(int i=first[u];i!=-;i=e[i].next)
if(!vis[e[i].v] && e[i].v!=pa)getr(r,e[i].v,u);
}
void getd(int u,int pa,int d)
{
dis[end++]=d;
for(int i=first[u];i!=-;i=e[i].next)
if(!vis[e[i].v] && e[i].v!=pa)getd(e[i].v,u,d+);
}
LL calc(int u,int d)
{
end=;
getd(u,-,d);
LL ret=;
int l=,r=end-,L,R;
sort(dis,dis+end);
// cout<<u<<":";
// for(int i=0;i<end;i++)cout<<dis[i]<<' ';
// cout<<endl;
while(l<r)
{
while(dis[l]+dis[r]>k && l<r)r--;
if(dis[l]+dis[r]==k)
{
if(dis[l]==dis[r])
{
ret+=((LL)(r-l+)*(LL)(r-l)/);
break;
}
else
{
L=R=;
while(dis[r-]==dis[r])r--,R++;
while(dis[l+]==dis[l])l++,L++;
ret+=((LL)L*(LL)R);L=R=;
r--;l++;
}
}
else l++;
}
return ret;
}
void dfs(int u)
{
now_size=n;
gets(u,-);
getr(u,u,-);
ans+=calc(root,);
vis[root]=;
for(int i=first[root];i!=-;i=e[i].next)
if(!vis[e[i].v])
{
ans-=calc(e[i].v,);
dfs(e[i].v);
}
return;
}
int main()
{
freopen("tree.in","r",stdin);
freopen("tree.out","w",stdout);
memset(first,-,sizeof(first));
n=read();k=read();
for(int i=;i<n-;i++)
{
a=read();b=read();
addEdge(i*,a,b);addEdge(i*+,b,a);
}
dfs();
printf("%lld\n",ans);
return ;
}

[冬令营day1T3]Tree的更多相关文章

  1. 牛客网字节跳动冬令营网络赛J Sortable Path on Tree —— 点分治

    题目:https://ac.nowcoder.com/acm/contest/296/J 用点分治: 记录了值起伏的形态,二元组 (x,y) 表示有 x 个小于号,y 个大于号: 因为小于号和大于号都 ...

  2. NOI2019冬令营报到通知

    由中国计算机学会(CCF)主办的2019全国青少年信息学奥林匹克冬令营(CCF NOI 2019冬令营)将于2019年1月24日-31日在广州市第二中学举行.其中1月24日为报到日,1月31日为疏散日 ...

  3. 数学-Matrix Tree定理证明

    老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...

  4. [特别篇] 记JZ冬令营(Finished)

    1.16 走错班了, 去了全是大佬的1班, 然后灰溜溜滚回2班了. 去参加开营仪式. 然而昏昏欲睡... 实在太累了澡也没洗.. 群英云集, 多是感慨. 当时依依惜别和铮铮誓言, 在重逢中无语凝噎. ...

  5. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  6. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  7. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  8. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  9. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

随机推荐

  1. 企业级Nginx负载均衡与keepalived高可用实战(一)Nginx篇

    1.集群简介 1.1.什么是集群 简单地说,集群就是指一组(若干个)相互独立的计算机,利用高速通信网络组成的一个较大的计算机服务系统,每个集群节点(即集群中的每台计算机)都是运行各自服务的独立服务器. ...

  2. Visual Studio 调试系列9 调试器提示和技巧

    系列目录     [已更新最新开发文章,点击查看详细] 01 固定数据提示 如果你在调试时,经常将鼠标悬停在数据提示上,就可能想固定变量的数据提示,方便自己随时查看. 即使在重新启动后,固定的变量也能 ...

  3. SpringBoot第四篇:整合JDBCTemplate

    作者:追梦1819 原文:https://www.cnblogs.com/yanfei1819/p/10868954.html 版权声明:本文为博主原创文章,转载请附上博文链接! 引言   前面几篇文 ...

  4. Phaser也可以实现countdownLatch的功能

    /** * 可用用phaser模拟countDownLatch * awaitAdvance方法:如果传入的参数和当前的phase相等,线程就阻塞住等待phase的值增加:否则就立即返回 */ pub ...

  5. Matlab中添加语音处理(voicebox)工具箱

    系统环境 win10+Matlab2017b 下载voicebox工具箱 官方下载:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.zip ...

  6. python网络爬虫(1)——安装scrapy框架的常见问题及其解决方法

    Scrapy是为了爬取网站数据而编写的一款应用框架,出名,强大.所谓的框架其实就是一个集成了相应的功能且具有很强通用性的项目模板. 其实在Linux和 Mac安装,就简单的pip命令即可: pip i ...

  7. Prometheus Alertmanager 介绍详解

    Prometheus 之 Alertmanager 介绍详解 告警无疑是监控中非常重要的环节,虽然监控数据可视化了,也非常容易观察到运行状态.但我们很难做到时刻盯着监控,所以程序来帮巡检并自动告警,这 ...

  8. Mysql系列(十二)—— 索引下推优化

    索引条件下推(ICP)是对MySQL使用索引从表中检索行的情况的优化.如果没有ICP,存储引擎会遍历索引以查找基表中的行,并将它们返回给MySQL服务器,该服务器会评估WHERE行的条件.启用ICP后 ...

  9. 2019 学霸君java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.学霸君等公司offer,岗位是Java后端开发,因为发展原因最终选择去了学霸君,入职一年时间了,也成为了面试官 ...

  10. Sharding-Jdbc概念与使用技巧

    1. Sharding-Jdbc概念与使用技巧 此讲解版本为4.0.0-RC1,目前最新的版本 2019年5月21日发布 1.1. 绑定表 指分片规则一致的主表和子表.例如:t_order表和t_or ...