We have a sorted set of digits `D`, a non-empty subset of `{'1','2','3','4','5','6','7','8','9'}`.  (Note that `'0'` is not included.)

Now, we write numbers using these digits, using each digit as many times as we want.  For example, if D = {'1','3','5'}, we may write numbers such as '13', '551', '1351315'.

Return the number of positive integers that can be written (using the digits of D) that are less than or equal to N.

Example 1:

Input: D = ["1","3","5","7"], N = 100
Output: 20
Explanation:
The 20 numbers that can be written are:
1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77.

Example 2:

Input: D = ["1","4","9"], N = 1000000000
Output: 29523
Explanation:
We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers,
81 four digit numbers, 243 five digit numbers, 729 six digit numbers,
2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers.
In total, this is 29523 integers that can be written using the digits of D.

Note:

  1. D is a subset of digits '1'-'9' in sorted order.
  2. 1 <= N <= 10^9

这道题给了我们一个有序字符串数组,里面是0到9之间的数(这里博主就纳闷了,既然只有一位数字,为啥不用 char 型,而要用 string 型),然后又给了一个整型数字N,问无限制次数使用D中的任意个数字,能组成多个不同的小于等于D的数字。先来分析例子1,当N为 100 时,所有的一位数和两位数都是可以的,既然可以重复使用数字,假设总共有n个数字,那么对于两位数来说,十位上和个位上分别都有n种可能,总共就是 n^2 种可能,对于一位数来说,总共n种可能。那么看到这里就可以归纳出当N总共有 len 位的话,我们就可以快速的求出不超过 len-1 位的所有情况综合,用个 for 循环,累加n的指数即可。然后就要来分析和数字N位数相等的组合,题目中的两个的例子的N都是1开始的,实际上N可以是任何数字,举个例子来说吧,假如 D={"1","3","5","7"},N=365,那么根据前面的分析,我们可以很快的算出所有的两位数和一位数的组合情况总数 4 + 4^2 = 20 个。现在要来分析三位数都有哪些组合,由于D数组是有序的,所以我们从开头遍历的话先取到的就是最小的,这时候有三种情况,小于,等于,和大于,每种的处理情况都有些许不同,这里就拿上面提到的例子进行一步一步的分析:

  • 对于N的百位数字3来说,D中的1小于N中的百位上的3,那么此时百位上固定为1,十位和个位上就可以是任意值了,即 1xx,共有 4^2 = 16 个。
  • 对于N的百位数字3来说,D中的3等于N中的百位上的3,那么此时百位上固定为3,十位和个位的值还是不确定,此时就不能再继续遍历D中的数字了,因为之后的数字肯定大于3,但是我们可以继续尝试N的下一位。
  • 对于N的十位数字6来说,D中的1小于N中的十位上的6,那么百位和十位分别固定为3和1,个位上就可以是任意值了,即 31x,共有 4 个。
  • 对于N的十位数字6来说,D中的3小于N中的十位上的6,那么百位和十位分别固定为3和3,个位上就可以是任意值了,即 33x,共有 4 个。
  • 对于N的十位数字6来说,D中的5小于N中的十位上的6,那么百位和十位分别固定为3和5,个位上就可以是任意值了,即 35x,共有 4 个。
  • 对于N的十位数字6来说,D中的7大于N中的十位上的6,此时再也组不成小于N的数字了,直接返回最终的 20+16+4+4+4=48 个。

代码如下:

class Solution {
public:
int atMostNGivenDigitSet(vector<string>& D, int N) {
string str = to_string(N);
int res = 0, n = D.size(), len = str.size();
for (int i = 1; i < len; ++i) res += pow(n, i);
for (int i = 0; i < len; ++i) {
bool hasSameNum = false;
for (string &d : D) {
if (d[0] < str[i]) res += pow(n, len - 1 - i);
else if (d[0] == str[i]) hasSameNum = true;
}
if (!hasSameNum) return res;
}
return res + 1;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/902

参考资料:

https://leetcode.com/problems/numbers-at-most-n-given-digit-set/

https://leetcode.com/problems/numbers-at-most-n-given-digit-set/discuss/225123/c%2B%2B100

https://leetcode.com/problems/numbers-at-most-n-given-digit-set/discuss/168439/C%2B%2B-O(logN)-Clear-code-with-explanation

[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)

[LeetCode] 902. Numbers At Most N Given Digit Set 最大为 N 的数字组合的更多相关文章

  1. LeetCode 902. Numbers At Most N Given Digit Set

    应该是常数 N的位数时间级别 我的这个方法超时很严重...但是特此记录 费劲巴拉写的... 超时: int atMostNGivenDigitSet(char** D, int DSize, int ...

  2. 902. Numbers At Most N Given Digit Set

    We have a sorted set of digits D, a non-empty subset of {'1','2','3','4','5','6','7','8','9'}.  (Not ...

  3. [Swift]LeetCode902. 最大为 N 的数字组合 | Numbers At Most N Given Digit Set

    We have a sorted set of digits D, a non-empty subset of {'1','2','3','4','5','6','7','8','9'}.  (Not ...

  4. [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数

    Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...

  5. [LeetCode] Consecutive Numbers 连续的数字

    Write a SQL query to find all numbers that appear at least three times consecutively. +----+-----+ | ...

  6. Leetcode: Count Numbers with Unique Digits

    Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...

  7. [LeetCode] Consecutive Numbers 连续的数字 --数据库知识(mysql)

    1. 题目名称   Consecutive Numbers 2 .题目地址 https://leetcode.com/problems/consecutive-numbers/ 3. 题目内容 写一个 ...

  8. LeetCode902. Numbers At Most N Given Digit Set

    题目: We have a sorted set of digits D, a non-empty subset of {'1','2','3','4','5','6','7','8','9'}.  ...

  9. [LeetCode] Lexicographical Numbers 字典顺序的数字

    Given an integer n, return 1 - n in lexicographical order. For example, given 13, return: [1,10,11,1 ...

随机推荐

  1. ideal 切换git和svn

    原文地址:https://blog.csdn.net/lixld/article/details/98851427 intellij ideal gi和svn切换: 之前项目是svn的,新的项目用了g ...

  2. 【Linux命令】at、crontab定时任务

    crontab定时任务(周期性) 一.简介 通过crontab命令可以在固定的间隔执行系统指令或shell脚本 二.crontab配置文件: Linux下的任务调度分为两类:系统任务调度和用户任务调度 ...

  3. 图解Hyperf框架:Hyperf 的初始化

  4. WPF --TextBox--圆角、水印、带单位

    <SolidColorBrush x:Key="TextBox.Static.Border" Color="#FFABAdB3"/> <Sol ...

  5. 钉钉SDK使用。

    (1)到 https://open-doc.dingtalk.com/microapp/faquestions/vzbp02 下载SDK (2)引入 using DingTalk.Api; using ...

  6. Spring源码系列 — BeanDefinition

    一.前言 回顾 在Spring源码系列第二篇中介绍了Environment组件,后续又介绍Spring中Resource的抽象,但是对于上下文的启动过程详解并未继续.经过一个星期的准备,梳理了Spri ...

  7. MySQL for OPS 08:MHA 高可用

    写在前面的话 主从架构在一般情况下只能满足我们小公司业务并非一刻都不能中断服务.但是对于大型公司而言,对然数据丢失,数据库挂了,我们可以通过技术找回,修复.但是其中修复过程所消耗的时间是不被允许的.此 ...

  8. Mysql综述--数据是如何读存的?(2)

    页的结构 页是一种InnoDB管理存储空间的基本单位,它一般大小在16kb左右.实际上存在着许多不同类型的页,我们这次主要介绍的页是用来存储数据的,也叫做索引页. 接下来看看索引页的结构图: 比较重要 ...

  9. qt 界面去掉系统边框2.0版

    之前的一版存在bug.如果将鼠标放移动到界面内某个可点击的widget上(如:QPushButton)上,按住鼠标左键不放,界面可能会出现界面非预期移动的问题. 那是因为当鼠标移动到可点击的widge ...

  10. 初学dubbo遇到的那些坑

    昨天刚接触dubbo,遇到了一些坑,当然,这也与刚从eclipse换到了idea有一定的关系. 首先是maven仓库的问题,c盘下面的.m2文件夹默认的会被开发工具访问,所以要访问自己的本地仓库,.m ...