A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for Bill's lunch for $10. Then later Chris gave Alice $5 for a taxi ride. We can model each transaction as a tuple (x, y, z) which means person x gave person y $z. Assuming Alice, Bill, and Chris are person 0, 1, and 2 respectively (0, 1, 2 are the person's ID), the transactions can be represented as [[0, 1, 10], [2, 0, 5]].

Given a list of transactions between a group of people, return the minimum number of transactions required to settle the debt.

Note:

  1. A transaction will be given as a tuple (x, y, z). Note that x ≠ y and z > 0.
  2. Person's IDs may not be linear, e.g. we could have the persons 0, 1, 2 or we could also have the persons 0, 2, 6.

Example 1:

Input:
[[0,1,10], [2,0,5]] Output:
2 Explanation:
Person #0 gave person #1 $10.
Person #2 gave person #0 $5. Two transactions are needed. One way to settle the debt is person #1 pays person #0 and #2 $5 each.

Example 2:

Input:
[[0,1,10], [1,0,1], [1,2,5], [2,0,5]] Output:
1 Explanation:
Person #0 gave person #1 $10.
Person #1 gave person #0 $1.
Person #1 gave person #2 $5.
Person #2 gave person #0 $5. Therefore, person #1 only need to give person #0 $4, and all debt is settled.

这道题给了一堆某人欠某人多少钱这样的账单,问经过优化后最少还剩几个。其实就相当于一堆人出去玩,某些人可能帮另一些人垫付过花费,最后结算总花费的时候可能你欠着别人的钱,其他人可能也欠你的欠,需要找出简单的方法把所有欠账都还清就行了。这道题的思路跟之前那道 Evaluate Division 有些像,都需要对一组数据颠倒顺序处理。这里使用一个 HashMap 来建立每个人和其账户的映射,其中账户若为正数,说明其他人欠你钱;如果账户为负数,说明你欠别人钱。对于每份账单,前面的人就在 HashMap 中减去钱数,后面的人在哈希表中加上钱数。这样每个人就都有一个账户了,接下来要做的就是合并账户,看最少需要多少次汇款。先统计出账户值不为0的人数,因为如果为0了,表明你既不欠别人钱,别人也不欠你钱,如果不为0,把钱数放入一个数组 accnt 中,然后调用递归函数。在递归函数中,首先跳过为0的账户,然后看若此时 start 已经是 accnt 数组的长度了,说明所有的账户已经检测完了,用 cnt 来更新结果 res。否则就开始遍历之后的账户,如果当前账户和之前账户的钱数正负不同的话,将前一个账户的钱数加到当前账户上,这很好理解,比如前一个账户钱数是 -5,表示张三欠了别人5块钱,当前账户钱数是5,表示某人欠了李四5块钱,那么张三给李四5块,这两人的账户就都清零了。然后调用递归函数,此时从当前改变过的账户开始找,cnt 表示当前的转账数,需要加1,后面别忘了复原当前账户的值,典型的递归写法,参见代码如下:

class Solution {
public:
int minTransfers(vector<vector<int>>& transactions) {
int res = INT_MAX;
unordered_map<int, int> m;
for (auto t : transactions) {
m[t[]] -= t[];
m[t[]] += t[];
}
vector<int> accnt;
for (auto a : m) {
if (a.second != ) accnt.push_back(a.second);
}
helper(accnt, , , res);
return res;
}
void helper(vector<int>& accnt, int start, int cnt, int& res) {
int n = accnt.size();
while (start < n && accnt[start] == ) ++start;
if (start == n) {
res = min(res, cnt);
return;
}
for (int i = start + ; i < n; ++i) {
if ((accnt[i] < && accnt[start] > ) || (accnt[i] > && accnt[start] < )) {
accnt[i] += accnt[start];
helper(accnt, start + , cnt + , res);
accnt[i] -= accnt[start];
}
}
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/465

类似题目:

Evaluate Division

参考资料:

https://leetcode.com/problems/optimal-account-balancing/

https://leetcode.com/problems/optimal-account-balancing/discuss/95369/share-my-on-npc-solution-tle-for-large-case

https://leetcode.com/problems/optimal-account-balancing/discuss/95355/11-liner-9ms-DFS-solution-(detailed-explanation)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 465. Optimal Account Balancing 最优账户平衡的更多相关文章

  1. [LeetCode] Optimal Account Balancing 最优账户平衡

    A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for ...

  2. LC 465. Optimal Account Balancing 【lock,hard】

    A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for ...

  3. Leetcode: Optimal Account Balancing

    A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for ...

  4. Optimal Flexible Architecture(最优灵活架构)

    来自:Oracle® Database Installation Guide 12_c_ Release 1 (12.1) for Linux Oracle base目录命名规范: /pm/s/u 例 ...

  5. OBST(Optimal Binary Tree最优二叉搜索树)

    二叉搜索树 二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的 ...

  6. LeetCode All in One 题目讲解汇总(持续更新中...)

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

  7. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  8. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

  9. Leetcode problems classified by company 题目按公司分类(Last updated: October 2, 2017)

    All LeetCode Questions List 题目汇总 Sorted by frequency of problems that appear in real interviews. Las ...

随机推荐

  1. Java中的Object类的几个方法

    Object类被称为上帝类,也被称为祖宗类.在定义Java类时,如果没有指定父类,那么默认都会去继承Object类.配合Java的向上类型转换,借助Object类就可以完成很多工作了. 在Object ...

  2. vue项目打包之后样式错乱问题,如何处理

    最近公司做的这个项目,要大量修改element里面的css样式,所以项目打包之后 会出现样式和本地开发的时候样式有很多不一样,原因可能是css加载顺序有问题,样式被覆改了. 所以在mian.js里面这 ...

  3. Sitecore 8.2 渠道简介

    渠道是联系人通过广告系列或面对面与您的品牌互动时所使用的路径.联系人可以通过手机上的应用与您的品牌互动,点击社交网络上的广告访问您的网站,或访问实体店购买商品.使用Sitecore体验平台,您可以使用 ...

  4. F#周报2019年第19期

    新闻 介绍.NET 5 发布.NET Core 3.0预览版5以及F#的REPL OpenFsharp CFP开启 F#的Giraffe服务端stub生成器被添加到openapi-generator中 ...

  5. winform子窗口调用父窗口的控件及方法-一般调用

    首先新建一个窗体应用程序,在项目属性中点击右键->添加->添加新项,选择Windows窗体->添加. 在Form1和Form2窗口中各添加一个按钮,并双击添加事件处理函数:     ...

  6. B-Tree详解

    之前写过一篇关于索引的文章<SQL夯实基础(五):索引的数据结构>,这次我们主要详细讨论下B-Tree. B-树 B-tree,即B树,而不要读成B减树,它是一种多路搜索树(并不是二叉的) ...

  7. jdk8 HashMap tableSizeFor

    今天读jdk8  HashMap源码,构造函数中 根据initialCapacity初始化threshold public HashMap(int initialCapacity, float loa ...

  8. Python【day 10】函数进阶-小结

    本节主要内容1.动态参数 *args **kwargs 形参:*args将多个位置参数聚合打包成元组 **kwargs将多个关键字参数聚合打包成字典 实参:*li1将列表进行解包打散成多个位置参数 * ...

  9. curl sftp libcurl 功能使用

    #include <curl/curl.h> #undef DISABLE_SSH_AGENT struct FtpFile { const char *filename; FILE *s ...

  10. 替换 Docker 或 Laradock 中 Debian 系统镜像源解决软件安装问题

    Docker Debian 镜像源替换 因多数默认的 Docker 镜像为国外的,而采用的镜像源也是国外的,故访问很慢,所以我们需要替换为国内的(比如阿里云或163等). 163 - Debian A ...