原题传送门

易知这个数列的顺序是不用考虑的

我们看两个数列 \(1,2,3\)和\(3,3,3\)都能删完,再看两个数列\(1,2,3,4\)和\(2,2,4,4\),也都能删完

不难发现,我们珂以把这些数字塞进桶中,记\(cnt_i\)表示数字\(i\)出现的次数,对于每个\(i\),在一颗线段树上把区间\([i-cnt_i+1,i]\)赋值成1(因为一次删\(cnt_i\)个珂以转化成每次删\(1\)个,值从大向小递减),最后看[1,n]上有几个点不是1,这就是题目所求的答案

单点修改就直接在线段树上单点修改,区间加减实际就相当于线段树值域平移,但这个实在太麻烦,相对的,我们珂以平移查询区间

我们珂以一开始就把\(1\)设为\(Max(n,m)+1\)这样就不用考虑负数的问题了

时间复杂度是\(O(m\log (2*Max(n,m)+n))\)

假·完整代码(这个是假算法)

#include <bits/stdc++.h>
#define N 450005
#define M 150005
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
int n,m,a[M],lim,cnt[N],w;
int tr[N<<3],sum[N];
inline void modify(register int x,register int l,register int r,register int pos,register int val)
{
if(l==r)
{
tr[x]=val;
return;
}
int mid=l+r>>1;
if(pos<=mid)
modify(x<<1,l,mid,pos,val);
else
modify(x<<1|1,mid+1,r,pos,val);
tr[x]=tr[x<<1]+tr[x<<1|1];
}
inline int query(register int x,register int l,register int r,register int L,register int R)
{
if(L<=l&&r<=R)
return tr[x];
int mid=l+r>>1,res=0;
if(L<=mid)
res+=query(x<<1,l,mid,L,R);
if(R>mid)
res+=query(x<<1|1,mid+1,r,L,R);
return res;
}
int main()
{
n=read(),m=read();
lim=m+n*2;
memset(cnt,0,sizeof(cnt));
memset(sum,0,sizeof(sum));
for(register int i=1;i<=n;++i)
{
a[i]=read();
if((++sum[n+a[i]-cnt[a[i]+m]])==1)
modify(1,1,lim,n+a[i]-cnt[a[i]+m],1);
++cnt[a[i]+m];
}
for(register int i=1;i<=m;++i)
{
int opt=read(),x=read();
if(opt)
{
x-=w;
--cnt[a[opt]+m];
if((--sum[n+a[opt]-cnt[a[opt]+m]])==0)
modify(1,1,lim,n+a[opt]-cnt[a[opt]+m],0);
a[opt]=x;
if((++sum[n+a[opt]-cnt[a[opt]+m]])==1)
modify(1,1,lim,n+a[opt]-cnt[a[opt]+m],1);
++cnt[a[opt]+m];
}
else
w+=x;
write(n-query(1,1,lim,n+1-w,n+n-w)),puts("");
}
return 0;
}

交一发,发现会WA46

实际因为我们有种情况没有考虑:当\(val>n\)时,所有的都要修改,然而到线段树上就变成了一段区间,会对答案造成影响

我们只需要动态插入/删除区间即可,这样线段树要维护区间最小值及其个数

真·完整代码

#include <bits/stdc++.h>
#define N 450005
#define M 150005
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Max(register int a,register int b)
{
return a>b?a:b;
}
int n,m,a[M],b[N],cnt[N],c,ql,qr,lim;
int minn[N<<3],sum[N<<3],tag[N<<3];
inline void pushup(register int x)
{
int ls=x<<1,rs=x<<1|1;
minn[x]=minn[ls],sum[x]=sum[ls];
if(minn[rs]<minn[x])
minn[x]=minn[rs],sum[x]=sum[rs];
else if(minn[rs]==minn[x])
sum[x]+=sum[rs];
}
inline void build(register int x,register int l,register int r)
{
if(l==r)
{
minn[x]=b[l];
sum[x]=1;
return;
}
int mid=l+r>>1;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
pushup(x);
}
inline void pushdown(register int x)
{
if(tag[x])
{
int ls=x<<1,rs=x<<1|1;
tag[ls]+=tag[x],tag[rs]+=tag[x];
minn[ls]+=tag[x],minn[rs]+=tag[x];
tag[x]=0;
}
}
inline void modify(register int x,register int l,register int r,register int L,register int R,register int val)
{
if(L<=l&&r<=R)
{
minn[x]+=val;
tag[x]+=val;
return;
}
int mid=l+r>>1;
pushdown(x);
if(L<=mid)
modify(x<<1,l,mid,L,R,val);
if(R>mid)
modify(x<<1|1,mid+1,r,L,R,val);
pushup(x);
}
inline int query(register int x,register int l,register int r,register int L,register int R)
{
if(L<=l&&r<=R)
return minn[x]?0:sum[x];
int mid=l+r>>1,res=0;
pushdown(x);
if(L<=mid)
res+=query(x<<1,l,mid,L,R);
if(R>mid)
res+=query(x<<1|1,mid+1,r,L,R);
return res;
}
int main()
{
n=read(),m=read();
c=Max(n,m);
for(register int i=1;i<=n;++i)
{
a[i]=read();
++cnt[a[i]+=c];
}
ql=c+1,qr=c+n,lim=c*2+n;
for(register int i=m+1;i<=qr;++i)
++b[i-cnt[i]+1],--b[i+1];
for(register int i=2;i<=qr+1;++i)
b[i]+=b[i-1];
build(1,1,lim);
for(register int i=1;i<=m;++i)
{
int opt=read(),x=read();
if(opt)
{
--cnt[a[opt]];
if(a[opt]<=qr)
modify(1,1,lim,a[opt]-cnt[a[opt]],a[opt]-cnt[a[opt]],-1);
a[opt]=x+ql-1;
modify(1,1,lim,a[opt]-cnt[a[opt]],a[opt]-cnt[a[opt]],1);
++cnt[a[opt]];
}
else
{
if(x==1)
{
if(cnt[qr])
modify(1,1,lim,qr-cnt[qr]+1,qr,-1);
--ql,--qr;
}
else
{
++ql,++qr;
if(cnt[qr])
modify(1,1,lim,qr-cnt[qr]+1,qr,1);
}
}
write(query(1,1,lim,ql,qr)),puts("");
}
return 0;
}

【题解】Luogu P5324 [BJOI2019]删数的更多相关文章

  1. luogu P5324 [BJOI2019]删数

    传送门 不如先考虑暴力,能删的序列首先有\(1,2,3...n\),还有就是升序排序后从后往前放数,第\(i\)位要么放\(i\),要么放\(i+1\)位置的数,例如\(1,2,4,4,5,6,9,9 ...

  2. [BJOI2019]删数(线段树)

    [BJOI2019]删数(线段树) 题面 洛谷 题解 按照值域我们把每个数的出现次数画成一根根的柱子,然后把柱子向左推导,\([1,n]\)中未被覆盖的区间长度就是答案. 于是问题变成了单点修改值,即 ...

  3. 题解 洛谷 P5324 【[BJOI2019]删数】

    先考虑对于一个序列,能使其可以删空的的修改次数. 首先可以发现,序列的排列顺序是没有影响的,所以可以将所有数放到桶里来处理. 尝试对一个没有经过修改的可以删空的序列来进行删数,一开始删去所有的\(n\ ...

  4. [BJOI2019] 删数

    https://www.luogu.org/problemnew/show/P5324 题解 首先我们需要弄清这个答案是什么. 对于一个长度为n的序列,那么它先删的肯定是\(n\),删完之后它就会跳到 ...

  5. [BJOI2019] 删数 [dp转贪心结论+线段树]

    题面 传送门 思路 dp部分 以下称合法序列为原题面中可以删空的序列 这个是我在模拟考场上的思路 一开始我是觉得,这个首先可以写成一个dp的形式:$dp[i][j]$表示用$j$个数字填满了目标序列的 ...

  6. Luogu P2426 【删数】

    状态定义: 一眼区间$DP$,从左右两边删不好定义状态,不如定义$dp[i][j]$表示$[i,j]$未删的最大值,转移就很自然了 转移: 从左边删$dp[i][j]=max(dp[i][j],dp[ ...

  7. Luogu5324 BJOI2019删数(线段树)

    考虑无修改怎么做.对于1~n的每个数,若其存在,将最后一个放在其值的位置,剩余在其前面依次排列,答案即为值域1~n上没有数的位置个数.带修改显然记一下偏移量线段树改一改就好了. #include< ...

  8. [Luogu5324][BJOI2019]删数(线段树)

    CF风格题,先猜结论,记数列中i这个数共出现了cnt[i]次,那么所有区间[i-cnt[i]+1,i]的并集的补集大小就是答案. 于是我们只需要线段树维护每个位置是否被某个区间覆盖到即可,对于整体加减 ...

  9. 【LOJ】#3094. 「BJOI2019」删数

    LOJ#3094. 「BJOI2019」删数 之前做atcoder做到过这个结论结果我忘了... em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以 ...

随机推荐

  1. redis三种模式对比

    模式类型 主从模式(redis2.8版本之前的模式).哨兵sentinel模式(redis2.8及之后的模式).redis cluster模式(redis3.0版本之后) 主从模式原理 同Mysql主 ...

  2. FZU Monthly-201906 tutorial

    FZU Monthly-201906 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AE B DG CF H A. X ...

  3. java 把 PEM 格式的公钥证书转换为 X.509 格式的证书

    代码: @UtilityClass public final class X509Certs { private static final CertificateFactory CERTIFICATE ...

  4. hue创建的hdfs数据在hdfs无法删除的问题。

    在linux时删除时出现: rmr: Permission denied: user=root, access=ALL, inode="/user/root/.Trash/191128080 ...

  5. jmeter beanshell 从文件中获取随机参数

    loadruner 参数化有个功能,可以设置在脚本每次出现参数时,自动更换参数值.在做jmeter自动化测试过程中,同一个请求中出现多个参数值,如一个接口可以添加n个信息的请求 [ { "n ...

  6. Error-ASP.NET:无效的 JSON 基元: object。

    ylbtech-Error-ASP.NET:无效的 JSON 基元: object.  1.返回顶部 1. “/”应用程序中的服务器错误. 无效的 JSON 基元: object. 说明: 执行当前 ...

  7. Linux下查看根目录各文件内存占用情况

    一.服务器运行一点时间后各种的项目文件,日志文件,数据库备份登,会越来越多,在linux下可以使用 du 和 df 命令查看. 1.df -h 命令查看整体磁盘使用情况 2. 使用 du -ah -- ...

  8. json 格式化处理工具

    json 格式化处理工具 用于JSON的快速命令行处理工具,简单无依赖. 我这边列举一些最常用的: 调试 http 请求时打印格式化后的数据 格式化本地或或流中的数据 获取 json 的键值或进行执行 ...

  9. Qt编写安防视频监控系统(界面很漂亮)

    一.前言 视频监控系统在整个安防领域,已经做到了烂大街的程序,全国起码几百家公司做过类似的系统,当然这一方面的需求量也是非常旺盛的,各种定制化的需求越来越多,尤其是这几年借着人脸识别的东风,发展更加迅 ...

  10. python 使用 elasticsearch 常用方法(聚合)

    #记录聚合查询方法 from elasticsearch import Elasticsearch es = Elasticsearch(['xx.xx.xx.xx:9200']) #获取最小的年龄r ...