原题传送门

易知这个数列的顺序是不用考虑的

我们看两个数列 \(1,2,3\)和\(3,3,3\)都能删完,再看两个数列\(1,2,3,4\)和\(2,2,4,4\),也都能删完

不难发现,我们珂以把这些数字塞进桶中,记\(cnt_i\)表示数字\(i\)出现的次数,对于每个\(i\),在一颗线段树上把区间\([i-cnt_i+1,i]\)赋值成1(因为一次删\(cnt_i\)个珂以转化成每次删\(1\)个,值从大向小递减),最后看[1,n]上有几个点不是1,这就是题目所求的答案

单点修改就直接在线段树上单点修改,区间加减实际就相当于线段树值域平移,但这个实在太麻烦,相对的,我们珂以平移查询区间

我们珂以一开始就把\(1\)设为\(Max(n,m)+1\)这样就不用考虑负数的问题了

时间复杂度是\(O(m\log (2*Max(n,m)+n))\)

假·完整代码(这个是假算法)

#include <bits/stdc++.h>
#define N 450005
#define M 150005
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
int n,m,a[M],lim,cnt[N],w;
int tr[N<<3],sum[N];
inline void modify(register int x,register int l,register int r,register int pos,register int val)
{
if(l==r)
{
tr[x]=val;
return;
}
int mid=l+r>>1;
if(pos<=mid)
modify(x<<1,l,mid,pos,val);
else
modify(x<<1|1,mid+1,r,pos,val);
tr[x]=tr[x<<1]+tr[x<<1|1];
}
inline int query(register int x,register int l,register int r,register int L,register int R)
{
if(L<=l&&r<=R)
return tr[x];
int mid=l+r>>1,res=0;
if(L<=mid)
res+=query(x<<1,l,mid,L,R);
if(R>mid)
res+=query(x<<1|1,mid+1,r,L,R);
return res;
}
int main()
{
n=read(),m=read();
lim=m+n*2;
memset(cnt,0,sizeof(cnt));
memset(sum,0,sizeof(sum));
for(register int i=1;i<=n;++i)
{
a[i]=read();
if((++sum[n+a[i]-cnt[a[i]+m]])==1)
modify(1,1,lim,n+a[i]-cnt[a[i]+m],1);
++cnt[a[i]+m];
}
for(register int i=1;i<=m;++i)
{
int opt=read(),x=read();
if(opt)
{
x-=w;
--cnt[a[opt]+m];
if((--sum[n+a[opt]-cnt[a[opt]+m]])==0)
modify(1,1,lim,n+a[opt]-cnt[a[opt]+m],0);
a[opt]=x;
if((++sum[n+a[opt]-cnt[a[opt]+m]])==1)
modify(1,1,lim,n+a[opt]-cnt[a[opt]+m],1);
++cnt[a[opt]+m];
}
else
w+=x;
write(n-query(1,1,lim,n+1-w,n+n-w)),puts("");
}
return 0;
}

交一发,发现会WA46

实际因为我们有种情况没有考虑:当\(val>n\)时,所有的都要修改,然而到线段树上就变成了一段区间,会对答案造成影响

我们只需要动态插入/删除区间即可,这样线段树要维护区间最小值及其个数

真·完整代码

#include <bits/stdc++.h>
#define N 450005
#define M 150005
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Max(register int a,register int b)
{
return a>b?a:b;
}
int n,m,a[M],b[N],cnt[N],c,ql,qr,lim;
int minn[N<<3],sum[N<<3],tag[N<<3];
inline void pushup(register int x)
{
int ls=x<<1,rs=x<<1|1;
minn[x]=minn[ls],sum[x]=sum[ls];
if(minn[rs]<minn[x])
minn[x]=minn[rs],sum[x]=sum[rs];
else if(minn[rs]==minn[x])
sum[x]+=sum[rs];
}
inline void build(register int x,register int l,register int r)
{
if(l==r)
{
minn[x]=b[l];
sum[x]=1;
return;
}
int mid=l+r>>1;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
pushup(x);
}
inline void pushdown(register int x)
{
if(tag[x])
{
int ls=x<<1,rs=x<<1|1;
tag[ls]+=tag[x],tag[rs]+=tag[x];
minn[ls]+=tag[x],minn[rs]+=tag[x];
tag[x]=0;
}
}
inline void modify(register int x,register int l,register int r,register int L,register int R,register int val)
{
if(L<=l&&r<=R)
{
minn[x]+=val;
tag[x]+=val;
return;
}
int mid=l+r>>1;
pushdown(x);
if(L<=mid)
modify(x<<1,l,mid,L,R,val);
if(R>mid)
modify(x<<1|1,mid+1,r,L,R,val);
pushup(x);
}
inline int query(register int x,register int l,register int r,register int L,register int R)
{
if(L<=l&&r<=R)
return minn[x]?0:sum[x];
int mid=l+r>>1,res=0;
pushdown(x);
if(L<=mid)
res+=query(x<<1,l,mid,L,R);
if(R>mid)
res+=query(x<<1|1,mid+1,r,L,R);
return res;
}
int main()
{
n=read(),m=read();
c=Max(n,m);
for(register int i=1;i<=n;++i)
{
a[i]=read();
++cnt[a[i]+=c];
}
ql=c+1,qr=c+n,lim=c*2+n;
for(register int i=m+1;i<=qr;++i)
++b[i-cnt[i]+1],--b[i+1];
for(register int i=2;i<=qr+1;++i)
b[i]+=b[i-1];
build(1,1,lim);
for(register int i=1;i<=m;++i)
{
int opt=read(),x=read();
if(opt)
{
--cnt[a[opt]];
if(a[opt]<=qr)
modify(1,1,lim,a[opt]-cnt[a[opt]],a[opt]-cnt[a[opt]],-1);
a[opt]=x+ql-1;
modify(1,1,lim,a[opt]-cnt[a[opt]],a[opt]-cnt[a[opt]],1);
++cnt[a[opt]];
}
else
{
if(x==1)
{
if(cnt[qr])
modify(1,1,lim,qr-cnt[qr]+1,qr,-1);
--ql,--qr;
}
else
{
++ql,++qr;
if(cnt[qr])
modify(1,1,lim,qr-cnt[qr]+1,qr,1);
}
}
write(query(1,1,lim,ql,qr)),puts("");
}
return 0;
}

【题解】Luogu P5324 [BJOI2019]删数的更多相关文章

  1. luogu P5324 [BJOI2019]删数

    传送门 不如先考虑暴力,能删的序列首先有\(1,2,3...n\),还有就是升序排序后从后往前放数,第\(i\)位要么放\(i\),要么放\(i+1\)位置的数,例如\(1,2,4,4,5,6,9,9 ...

  2. [BJOI2019]删数(线段树)

    [BJOI2019]删数(线段树) 题面 洛谷 题解 按照值域我们把每个数的出现次数画成一根根的柱子,然后把柱子向左推导,\([1,n]\)中未被覆盖的区间长度就是答案. 于是问题变成了单点修改值,即 ...

  3. 题解 洛谷 P5324 【[BJOI2019]删数】

    先考虑对于一个序列,能使其可以删空的的修改次数. 首先可以发现,序列的排列顺序是没有影响的,所以可以将所有数放到桶里来处理. 尝试对一个没有经过修改的可以删空的序列来进行删数,一开始删去所有的\(n\ ...

  4. [BJOI2019] 删数

    https://www.luogu.org/problemnew/show/P5324 题解 首先我们需要弄清这个答案是什么. 对于一个长度为n的序列,那么它先删的肯定是\(n\),删完之后它就会跳到 ...

  5. [BJOI2019] 删数 [dp转贪心结论+线段树]

    题面 传送门 思路 dp部分 以下称合法序列为原题面中可以删空的序列 这个是我在模拟考场上的思路 一开始我是觉得,这个首先可以写成一个dp的形式:$dp[i][j]$表示用$j$个数字填满了目标序列的 ...

  6. Luogu P2426 【删数】

    状态定义: 一眼区间$DP$,从左右两边删不好定义状态,不如定义$dp[i][j]$表示$[i,j]$未删的最大值,转移就很自然了 转移: 从左边删$dp[i][j]=max(dp[i][j],dp[ ...

  7. Luogu5324 BJOI2019删数(线段树)

    考虑无修改怎么做.对于1~n的每个数,若其存在,将最后一个放在其值的位置,剩余在其前面依次排列,答案即为值域1~n上没有数的位置个数.带修改显然记一下偏移量线段树改一改就好了. #include< ...

  8. [Luogu5324][BJOI2019]删数(线段树)

    CF风格题,先猜结论,记数列中i这个数共出现了cnt[i]次,那么所有区间[i-cnt[i]+1,i]的并集的补集大小就是答案. 于是我们只需要线段树维护每个位置是否被某个区间覆盖到即可,对于整体加减 ...

  9. 【LOJ】#3094. 「BJOI2019」删数

    LOJ#3094. 「BJOI2019」删数 之前做atcoder做到过这个结论结果我忘了... em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以 ...

随机推荐

  1. access us

    Ubuntu下设置 chrome的SwitchyOmega Wiki (简体中文)wiki Linux安装配置客户端及开机自动启动 运维 安装 配置 搭建服务以及配置多用户 安装和配置 一键搭建 服务 ...

  2. MVC WebApi Swagger帮助文档 接口用法

    1.WebApi在解决方案Apps.WebApi中 2.将Apps.WebApi设置为启动项目之后,可以直接浏览到Api的帮助文档,并直接进行调试 3.登录接口 4.登录获取的token来访问其他接口 ...

  3. mysql分页和oracle分页

    1,mysql分页 select * from table_test LIMIT ((pageNum - 1) * pageSize),pageSize) 2,oracle分页 select * fr ...

  4. Hyper-V中安装CentOS7设置静态ip并且可以连接外网

    https://blog.csdn.net/xj19940904/article/details/89165002 https://blog.csdn.net/u011598235/article/d ...

  5. Python3中通过fake_useragent生成随机UserAgent

    安装和使用 fake_useragent第三方库,来实现随机请求头的设置: GitHub               ---> https://github.com/hellysmile/fak ...

  6. JVM线程状态Running、Sleeping、Wait、Park、Monitor

    1,使用JVisualVM时,打开Threads监控,我们可以发现Java的线程状态有以下几种: 2,JVM线程状态: NEW, RUNNABLE, BLOCKED, WAITING, TIMED_W ...

  7. git clone或者git clone时遇到gnutls_handshake() failed: An unexpected TLS packet was received.如何处理?

    答: 直接将https修改为http即可, 如: $ git clone https://github.com/Jello_Smith/my-example.git ->  git clone ...

  8. groupby 的妙用(注意size和count)

    Pandas的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚. 今天,我们一起来领略下groupby()的魅力吧. 首先,引入相关package: ...

  9. Spring @RequestMapping 参数说明

    @RequestMapping 参数说明: value:  指定请求的实际地址, 比如 /action/info之类.method:  指定请求的method类型, GET.POST.PUT.DELE ...

  10. (转)ES6系列——let和const深入理解

    原文:https://juejin.im/post/59e6a86d518825422c0cbb6f https://www.cnblogs.com/slly/p/9234797.html-----l ...