RMQ问题(超详细!!!)
一、简介
RMQ是询问某个区间内的最大值或最小值,暴力解法对每个询问区间用循环找最值,当n、q>10000会TLE。
常用RMQ的求解方法——ST算法。
ST算法通常用在要多次询问一些区间的最值的问题中。它可以做到O(nlogn)的预处理,O(1)回答每个询问。
使用ST算法的条件是无修改,因此它适用于没有修改并且询问次数较多(10^6级别甚至更大)的情况。
优点:代码短,效率高,实现简单
缺点:适用性差
二、ST算法流程
预处理:
ST算法的原理实际上是动态规划,我们用a[1...n]表示一组数。设f[i, j]表示从a[i]到a[i + 2j - 1]这个范围内的最大值,也就是以a[i]为起点连续2j个数的最大值。由于元素个数为2j个,所以从中间平均分成两部分,每一部分的元素个数刚好为2j-1个,也就是说,把f[i,j]分为f[i, j-1]和f[i + 2j-1, j-1],如下图:
举个栗子吧——如下图所示
整个区间的最大值一定是左右两部分最大值的较大值,满足动态规划的最优化原理,分析得到状态转移方程:
f[i][j] = max(f[i][j - 1], f[i + 2j-1][j - 1]),边界条件为f[i][0] = a[i],这样就可以在O(nlogn)的时间复杂度内预处理f数组。
for(int j=;j<=LN;j++) for(int i=;i+(<<j)-<=n;i++) f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]); // <<左移运算符,优化时间常数
询问
若我们要询问区间[li, ri]的最大值,则先求出最大的x满足2x(此处为2的x次方)≤ ri - li + 1,推出x=log2(ri-li+1)
那么区间[li, ri]=[li, li+2x-1]U[ri-2x+1, ri] ,如下图所示:
ans = max(f[li][x], f[ri–2x +1][x]);
两个区间的元素个数都为2x,所以[li, ri]的最大值为max(f[li][x], f[ri - 2x + 1][x]),可以在O(1)内计算出来。虽然这两个区间有交集,但是对于求区间最值来说没有影响,这就是ST算法只适用于求区间最值的原因。
技巧:
因为cmath库中的log2函数效率不高,所以除了调用log2函数外,通常还会使用O(N)递推预处理出1~N这N种区间长度各自对应的k值。具体地,设lg[d]表示log2d下取整,log2d=log2((d/2)*2)=log2(d/2) + 1则lg[d] = lg[d/2]+1。
lg[]=-;//为了lg[1]=0;
for(int i=;i<=n;i++)
lg[i]=lg[i>>]+;// >> 右移运算符,优化时间常数
那么再来看一道例题吧——
1541:【例 1】数列区间最大值
【题目描述】
输入一串数字,给你 M 个询问,每次询问就给你两个数字 X,Y,要求你说出 X 到 Y 这段区间内的最大数。
【输入】
第一行两个整数 N,M 表示数字的个数和要询问的次数; 接下来一行为 N个数; 接下来 M行,每行都有两个整数 X,Y。
【输出】
输出共 M行,每行输出一个数。
【输入样例】
10 2
3 2 4 5 6 8 1 2 9 7
1 4
3 8
【输出样例】
5
8
RMQ问题(超详细!!!)的更多相关文章
- 【转】(超详细)jsp与servlet之间页面跳转及参数传递实例
初步学习JavaEE,对其中jsp与Servlet之间的传值没弄清楚,查看网上资料,发现一篇超详细的文章,收获大大,特此记录下来.具体链接:http://blog.csdn.net/ssy_shand ...
- 超强、超详细Redis数据库入门教程
这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下 [本教程目录] 1.redis是什么2.redis的作者何许人也3.谁在使用red ...
- Github上传代码菜鸟超详细教程【转】
最近需要将课设代码上传到Github上,之前只是用来fork别人的代码. 这篇文章写得是windows下的使用方法. 第一步:创建Github新账户 第二步:新建仓库 第三部:填写名称,简介(可选), ...
- WebRTC VideoEngine超详细教程(三)——集成X264编码和ffmpeg解码
转自:http://blog.csdn.net/nonmarking/article/details/47958395 本系列目前共三篇文章,后续还会更新 WebRTC VideoEngine超详细教 ...
- [转]超详细图解:自己架设NuGet服务器
本文转自:http://diaosbook.com/Post/2012/12/15/setup-private-nuget-server 超详细图解:自己架设NuGet服务器 汪宇杰 ...
- GitHub超详细图文攻略
GitHub超详细图文攻略 - Git客户端下载安装 GitHub提交修改源码工作流程 Git 分类: 转载2014-03-25 21:10 10641人阅读 评论(2) 收藏 举报 GitHubbr ...
- 超详细的Xcode代码格式化教程,可自定义样式。
超详细的Xcode代码格式化教程,可自定义样式. 为什么要格式化代码 当团队内有多人开发的时候,每个人写的代码格式都有自己的喜好,也可能会忙着写代码而忽略了格式的问题.在之前,我们可能会写完代码后,再 ...
- Struts2+Spring4+Hibernate4整合超详细教程
Struts2.Spring4.Hibernate4整合 超详细教程 Struts2.Spring4.Hibernate4整合实例-下载 项目目的: 整合使用最新版本的三大框架(即Struts2.Sp ...
- 超全超详细的HTTP状态码大全(推荐抓包工具HTTP Analyzer V6.5.3)
超全超详细的HTTP状态码大全 本部分余下的内容会详细地介绍 HTTP 1.1中的状态码.这些状态码被分为五大类: 100-199 用于指定客户端应相应的某些动作. 200-299 用于表示请求成功. ...
- 安装64位Oracle 10g超详细教程
安装64位Oracle 10g超详细教程 1. 安装准备阶段 1.1 安装Oracle环境 经过上一篇博文的过程,已经完成了对Linux系统的安装,本例使用X-Manager来实现与Linux系统的连 ...
随机推荐
- MySQL之查询篇(三)
一:查询 1.创建数据库,数据表 -- 创建数据库 create database python_test_1 charset=utf8; -- 使用数据库 use python_test_1; -- ...
- 【转载】Windows系统电脑如何更换盘符号
在笔记本电脑或者办公电脑的使用过程中,有时候需要更换盘符号,例如在重装系统后,硬盘相应的分区盘符号可能会发生错乱变化,此时如果想更换回重装系统之前的盘符号,可以通过计算机管理里面的磁盘管理来实现更换盘 ...
- 27、获取图片验证需要的uuId
export function getUUID() { return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, c => ...
- 汽车制造商表态:必须依靠MES系统来管控流程
汽车行业特点 汽车工业是一个高投入,高产出,集群式发展的产业部门. 汽车自身的投资,生产,研发,供应,销售,维修:前序的原材料,零部件,技术装备,物流:后序的油料,服务,信贷,咨询,保险,直至基础设施 ...
- 第一册:lesson 131.
原文: Don't be so sure. question:What's the problem about deciding on a holiday. Where are you going t ...
- MySQL 5.7数据库参数优化
连接相关参数 max_connections:允许客户端并发连接的最大数量,默认值是151,一般将该参数设置为500-2000max_connect_errors:如果客户端尝试连接的错误数量超过这个 ...
- Maven项目中jstl表达式失效
从网上看到的可能原因: 1.包没导入 2.web.xml版本太低,不支持 最后,我一直忽略了的解决办法: 关于jstl和el表达式失效的解决办法 - - ITeye博客 https://aazham. ...
- 【VNCserver】Centos7.4安装VNC连接华为云或亚马逊云
1.1 文档背景 CentOS 7 / RHEL 7部署图形化界面 安装VNCserver实现linux系统云主机桌面化,通过普通用户实现桌面化操作 2. Vncserver服务端部署 2.1 安装 ...
- JavaSE理论篇
将已学过的知识记录在此,既能便于以后温习又能方便知识共享,做到共同成长. 计算机语言发展简史 主要分为三个阶段 机器语言:打点机,有点表示1,没有表示0,打点计时器 低级语言:汇编语言 高级语言:Ja ...
- webpack4.0报WARNING in configuration警告
在进行webpack打包工作时,先进行如下步骤 1). 安装webpack:推荐全局命令 cnpm install webpack -g 查看webpack版本 webpack -v 2) . 此时 ...